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Nontuberculous mycobacteria (NTM) have been isolated from water, soil, air, food, protozoa, plants, animals, and humans.
Although most NTM are saprophytes, approximately one-third of NTM have been associated with human diseases. In this study,
we did a comparative proteomic analysis among five NTM strains isolated from several sources. There were different numbers of
protein spots from M. gordonae (1,264), M. nonchromogenicum type I (894), M. nonchromogenicum type II (935), M. peregrinum
(806), and M. scrofulaceum/Mycobacterium mantenii (1,486) strains, respectively. We identified 141 proteins common to all strains
and specific proteins to each NTM strain. A total of 23 proteins were selected for its identification. Two of the common proteins
identified (short-chain dehydrogenase/reductase SDR and diguanylate cyclase) did not align with M. tuberculosis complex protein
sequences, which suggest that these proteins are found only in the NTM strains. Some of the proteins identified as common to
all strains can be used as markers of NTM exposure and for the development of new diagnostic tools. Additionally, the specific
proteins to NTM strains identified may represent potential candidates for the diagnosis of diseases caused by these mycobacteria.

1. Introduction

Mycobacteria that are not members of the Mycobacterium
tuberculosis complex (Mycobacterium africanum, Mycobac-
terium bovis, Mycobacterium bovis BCG, Mycobacterium
canettii, Mycobacterium microti, and Mycobacterium tubercu-
losis) or leprosy are classified as nontuberculous mycobacteria
(NTM). The NTM group comprises more than 150 species
that are widely distributed in many different environments
(http://www.bacterio.cict.fr/m/mycobacterium.html). NTM
have been isolated from water, soil, air, food, protozoa,
plants, animals, and humans [1, 2]. Although most NTM
are saprophytes, approximately one-third of NTM have been
associated with human diseases [3, 4].

NTM infection is relatively uncommon and they are more
frequently observed in immunocompromised individuals [5].
However, the rate of disease caused by NTM in individ-
uals without abnormalities that would predispose them to
infection appears to be increasing [6]. The development of

new epidemiological tools, which are based on molecular
techniques, has allowed an increased diagnosis of NTM
disease and an increase in the identification of NTM species
that are responsible for disease [4, 7].

Person to person transmission of NTM has not been
reported, and it is generally accepted that NTM infections
are acquired from environmental sources (water, soil) and
that they are responsible for many nosocomial infections
and occupational diseases. Some authors have indicated that
NTM infections were directly related to exposure to contam-
inated water as they demonstrated to isolate the same clones
from the water and patients [1, 8, 9]. Nevertheless, there is also
a correlation between NTM-contaminated metallic fluids
and aerosols with hypersensitive pneumonitis, asthma, and
bronchitis observed in metallurgical workers [10]. The NTM
species associated with human diseases have been isolated
from the lungs, skin, and other soft tissues. Pulmonary
infection is the most common disease manifestation and is
associated with an increased age of the patient, while the skin



and soft tissue diseases have not been associated with age or
gender [4, 7].

Previous exposure to NTM has been proposed as one
of the main causes of reduced efficacy of BCG vaccination
against pulmonary tuberculosis infection [11, 12]. Black et al.
demonstrated that young adults living in the northern part
of Malawi are immunologically reactive to NTM antigens
prior to vaccination with BCG [13]. In addition, numerous
animal model studies have provided evidence that exposure
to NTM before the BCG vaccine application may mod-
ulate the immune response that is induced by the BCG
vaccine [14, 15]. Mendoza-Coronel et al. demonstrated that
Mycobacterium avium may be implicated in the induction of
immune tolerance mechanisms, which could impact the T
cell response that is induced by BCG vaccination [16].

Additionally, exposure to NTM is responsible for the
low predictive value of the purified protein derivative (PPD)
test. The PPD or the Mantoux reaction is the only available
diagnostic tool to identify latent tuberculosis. Ideally, the PPD
test could be used as a marker for tuberculosis infection,
but unfortunately there is cross-reactivity between NTM
infection and BCG vaccination [17-19]. Black et al. described
that the IFN-gamma response to M. tuberculosis purified
protein derivative (PPD) after vaccination was lower in
individuals who reacted strongly to NTM antigens [13].

The increase of NTM infections, the variability of BCG
vaccine protection, and the lack of a diagnostic tool for
Mycobacterium species infection make it necessary to identify
novel proteins that can potentially be used in the development
of new vaccines and diagnostic tools against tuberculosis
infection [20].

In this study, we did a comparative proteomic analysis of
five different NTM strains: three were isolated from the pump
water in Mexico City (Mycobacterium gordonae, Mycobac-
terium nonchromogenicum type II, and Mycobacterium pere-
grinum), one was isolated from human pulmonary infection
(Mycobacterium scrofulaceum/Mycobacterium mantenii), and
one was purchased (M. nonchromogenicum type I, ATCC
1953). We identified proteins common to all strains and
specific proteins to each NTM strain. Some of the proteins
that were common between the strains could be used as
markers of NTM exposure.

2. Materials and Methods

2.1. Bacterial Strains. Five strains of NTM were used in this
study: three were isolated from the pump water in Mexico
City as previously described by Castillo-Rodal et al. (M.
gordonae, M. nonchromogenicum type I1, and M. peregrinum)
[2], one was isolated from human pulmonary infection
(M. scrofulaceum/M. mantenii), and one was purchased (M.
nonchromogenicum type II, ATCC 1953) (Table 1). To ensure
that all NTM strains were in the metabolically activated
state, growth curves of each strain in Sauton medium were
determined (Figure1). All strains were grown to the mid-
logarithmic phase (10 days for M. nonchromogenicum type
I, 20 days for M. nonchromogenicum type II, 11 days for
M. gordonae, 8 days for M. peregrinum, and 17 days for M.
scrofulaceum/M. mantenii) at 37°C with shaking and then
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FIGURE 1: Representative growth curves of NTM strains included in
this study. Growth curves were realised on Sauton medium at 37°C
by duplicate.

were harvested by centrifugation, washed three times, and
suspended in sterile deionised water.

2.2. Sample Preparation and 2D-PAGE. Cellular proteins
were obtained by sonicating the bacteria (Ultrasonic Pro-
cessor, Cole Parmer Corporation, USA) in the presence
of protease inhibitors (10 mM PMSF, 1mM EDTA; cycles:
1 min ON/Imin OFF) at 4°C. For 2D-PAGE, approximately
80 ug of protein for the analytical gels or 100-150 ug of
protein for the preparative gels was solubilised, denatured,
and reduced in sample buffer (4% CHAPS, 9 M urea, 70 mM
I-dithiothreitol (DTT), 0.001% bromophenol blue, and 0.1%
3-10 ampholyte) and was used to rehydrate 11-cm, pH 4-7
IPG strips (ReadyStripTM, IPG strips, Bio-Rad, USA). IEF
was carried out on a Multiphor II (Amersham Biosciences,
UK) until 52,000 VH at 17°C. Prior to separation in the
second dimension, IPG strips were equilibrated in a solution
containing 6 M urea, 30% (v/v) glycerol, 50 mM Tris-base pH
8.8, and 2% (w/v) SDS. The strips were equilibrated first for
15min with 70 mM DTT and then for 15 min with 120 mM
iodoacetamide. The second-dimension electrophoresis was
performed using a 12.5% polyacrylamide gel (Hoefer SE-600,
Amersham Biosciences, UK) with a voltage gradient of 50—
150 V for approximately four hours. Once fixed, the proteins
were silver-stained and the gel images were then captured in
a digital format for analysis (Molecular Imager GS-800TM
Calibrated Densitometer, Bio-Rad, USA).

2.3. Gel Analysis and Spot Selection. 2D-PAGE was per-
formed twice for each strain, and independent cultures were
utilised to eliminate technical variation. Gel analysis was
performed using PDQuest-Advanced 2D Analysis V8.0 (Bio-
Rad, USA). A master image gel (MIG) was integrated with
the two duplicate gels of each strain and was utilised for
comparison. To estimate and overcome technical variations
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TABLE 1: Description of the NTM strains used in this study.
Strain Source Growth
M. gordonae Superficial water Slow
M. nonchromogenicum type I (ATCC 19530) Soil Slow
M. nonchromogenicum type II Superficial water Slow
M. peregrinum Water distribution system Mexico City Fast
M. scrofulaceum/M. mantenii Human pulmonary infection Slow
TABLE 2: Spots identified in the 2D-PAGE gels of cellular proteins from various NTM strains.
Strain Total spots in master image gel CV (%)*
M. gordonae 1,264 0.2
M. nonchromogenicum type I 894 5.5
M. nonchromogenicum type 11 935 0.07
M. peregrinum 806 0.02
M. scrofulaceum/M. mantenii 1,486 0.01

*Coefficient of variation: data were normalised according to the total density of the gel image.

between replicates, the spots were quantified for all of the
gels. The variation in the coefficients was calculated using
a previously described method [21, 22]. The spot intensity
values were normalised to the total pixel count for each gel.
Ten common spots for all strains, 7 specific spots for M.
gordonae strain, and 2 specific spots for M. arupense, M. non-
chromogenicum, and M. peregrinum strains were selected
and identified by mass spectrometry. Spot selection criteria
included the following: the spot was well defined, the spot had
a high intensity, and the spot locations were diversely spaced
throughout the gel.

2.4. Protein Identification. The selected spots were identified
by a previously described protocol [21, 22]. Protein identifi-
cation was performed using a 3200 QTRAP hybrid tandem
mass spectrometer (3200 QTRAP, Applied Biosystems, USA)
equipped with a nanoelectrospray ion source (NanoSpray II)
and a MicrolonSpray II head. Proteins were identified based
on their MS/MS spectra datasets using the MASCOT search
algorithm (Version 1.6b9, Matrix Science, London, UK).
A BLAST search was conducted comparing the sequences
to the M. tuberculosis complex and Eubacteria kingdom
sequences of the National Center for Biotechnology Informa-
tion (NCBI) nonredundant database (NCBI nr20070623).

3. Results and Discussion

All of the NTM strains that were used in this study were
slow growth strains, except for M. peregrinum that was a
fast growth strain. We determined that the proteins did
not have evidence of degradation by a polyacrylamide gel
electrophoresis (data not shown).

The cell fractions from the five NTM strains in the
mid-logarithmic phase were isolated and then analysed by
two-dimensional polyacrylamide gel electrophoresis (2D-
PAGE). We identify different number of protein spots from
M. gordonae (1,264), M. nonchromogenicum type 1 (894),
M. nonchromogenicum type II (935), M. peregrinum (806),
and M. scrofulaceum/M. mantenii (1,486) strains, respectively

(Figure 2, Table 2). The distribution of the proteins by MM
and pl was similar between the five NTM strains analysed
(Figure 3).

Comparison of the protein profiles showed that 141
proteins were present in all NTM strains studied and approx-
imately 80% of the proteins were shared between two or
more strains (named common proteins). We also identified
proteins present in only one NTM strain (named specific
proteins). M. gordonae was observed to have the highest
percentage of specific proteins, with 24% (Table 3).

A total of 23 proteins of the five NTM strains studied were
selected for their identification by MS-based technologies.
Spot selection criteria included the following: the spot was
well defined, the spot had a high intensity, and the spot
locations were diversely spaced throughout the gel.

We identify ten common proteins to all NTM strains
studied (Table 4). Four of these proteins corresponded to
informational pathways (RNA polymerase beta subunit,
50S ribosomal protein L7/L12, diguanylate cyclase, and
DNA polymerase III), three were related to intermediary
metabolism and respiration (adenylate kinase, probable alde-
hyde dehydrogenase, and enolase), two were identified as
conserved hypothetical proteins (WAG31, Rv3075c¢), and one
was related to lipid metabolism (short-chain dehydroge-
nase/reductase). The 50S ribosomal protein L7/L12, adenylate
kinase, enolase, and two hypothetical proteins (WAG31 and
Rv3075¢) have been previously identified in the proteome of
M. tuberculosis and M. bovis BCG showing that these proteins
are shared with M. tuberculosis complex species [23-25].
Interestingly, the ribosomal protein L7/L12 and hypothetical
protein WAG3I have been found in the proteome of PPD M.
tuberculosis and/or PPD M. bovis [26]. Furthermore, the 50S
ribosomal protein L7/L12 was described as an immunogenic
protein in the BCG Mexico strain suggesting that this protein
may be part of the cross-reaction observed between BCG
vaccination and NTM exposure [27]. The five remaining
proteins were identified for the first time in a mycobacterial
proteome in this study.
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FIGURE 2: Representative 2D-PAGE of NTM cellular proteins of (a) M. nonchromogenicum type I, (b) M. peregrinum, (c) M. nonchro-
mogenicum type 11, (d) M. scrofulaceum/M. mantenii, and (e) M. gordonae. Eighty micrograms of cell proteins was isoelectrically focused
in IPG strips (pH 4-7) and run on sodium dodecyl sulphate (SDS) 12.5% polyacrylamide gel. Gels were silver-stained and analysed with
PDQuest 2D Analysis V8.0 (Bio-Rad, USA). The yellow and red circles were used to identify common proteins to all NTM strains and
specific proteins to each NTM strain, respectively, by MS-based techniques.

The proteins of NTM that were identified in this study
and have been previously described in the M. bovis BCG
proteome can explain the cross-reactivity observed between
BCG vaccination and NTM exposition. For example, the 50S
ribosomal protein L7/L12, which we determined to be present
in all proteomes of NTM strains studied, has been previously
described as an immunogenic protein that upregulated the
expression of the mannose receptor, CD80, CD86, and MHC

class IT molecules and it is associated with mycobacterial
virulence [28, 29].

Moreover, the proteins that have previously been iden-
tified in the PPD M. tuberculosis proteome and that were
identified in the NTM proteome, such as 50S ribosomal
protein L7/L12, adenylate kinase, and hypothetical protein
WAGS3I, may be the cause of the low predictive value of the
PPD test to diagnose M. tuberculosis infection [26]. In fact,
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FIGURE 3: Distribution of proteins by isoelectric point (a) and molecular mass (b). Gel analysis was performed using PDQuest-Advanced 2D

Analysis V8.0 (Bio-Rad, USA).

TaBLE 3: Common and specific proteins in the NTM strains studied.

Specific proteins™* (%)

Strain Common proteins” (%)

M. gordonae 963 (76) 301 (24)
M. nonchromogenicum type 1 701 (81) 166 (19)
M. nonchromogenicum type 11 723 (81) 171 (19)
M. peregrinum 671 (83) 135 (17)
M. scrofulaceum/M. mantenii 1,231 (83) 255 (17)
Proteins common to all strains 141

*Common proteins were defined as proteins that were present in at least two NTM strains.
**Specific proteins were defined as proteins present only in one NTM strain.

the 50S ribosomal protein L7/L12 is an immunogenic protein
that induces a strong delayed-type hypersensitivity reaction
[28], while the hypothetical protein WAG31 is involved in
peptidoglycan synthesis and it has an important role in wall
synthesis, cell growth, and cell division of mycobacteria [30].

Thirteen specific proteins from the NTM strains were
identified by MS-based technologies (Table 4). We identi-
fied two specific proteins to M. arupense (deoxyuridine 5'-
triphosphate nucleotidohydrolase and probable 3-hydroxyl-
thioester dehydratase), M. nonchromogenicum (conserved
hypothetical protein, catalase-peroxidase), and M. peregri-
num (mannose-binding lectin, inositol-5-monophosphate
dehydrogenase) and seven specific proteins to M. gordonae
(probable cold shock protein A, putative mannose-specif-
ic lectin precursor, superoxide dismutase, malate dehy-
drogenase, F420-dependent glucose-6-phosphate dehydro-
genase, luciferase-like protein, and hypothetical protein
SKA58.12772). Four proteins identified as specific to M.
gordonae (probable cold shock protein A, superoxide dismu-
tase, malate dehydrogenase, and F420-dependent glucose-6-
phosphate dehydrogenase) have also been identified in the

proteomes of M. tuberculosis and/or M. bovis BCG [23-
25]. Moreover, the F420-dependent glucose-6-phosphate
dehydrogenase and superoxide dismutase proteins have
been identified in PPD M. avium and M. immunogenum
proteomes, respectively [26, 31]. Interestingly, Dong et al.
described that the superoxide dismutase has one immun-
odominant epitope for cytotoxic T lymphocytes, which are
implicated in protective immunity against tuberculosis [32].
These findings suggest that these proteins, which were iden-
tified as specific to M. gordonae, are shared with other NTM
strains and these may be the cause of cross-reactivity against
M. tuberculosis, M. bovis BCG, and/or other NTM.

On the other hand, we identified three specific pro-
teins to M. gordonae (putative mannose-specific lectin pre-
cursor, luciferase-like protein, and hypothetical protein
SKA58_12772) and one specific protein to M. peregrinum
(mannose-binding lectin) that have not been previously
described in any proteomic analysis of mycobacterial strains
and did not align with any protein sequences in the M.
tuberculosis complex database (data not shown). The function
of these proteins is not well defined; however, we have known
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that the lectins can play a major role in the interaction with
human cells [33, 34]. These proteins could be utilised to
discriminate between NTM and Mycobacterium tuberculosis
complex infections. However, the presence of these proteins
in other NTM species that were not included in this study
must be determined by specific assays.

4. Conclusions

NTM are a group of environmental bacteria that are consid-
ered to be potentially pathogenic both to immunocompetent
and immunocompromised individuals. Exposure to these
bacteria is a factor involved in the variability of the protective
efficacy of the BCG vaccine because of cross-reactive antigens
that are common between NTM and strains of the M. tubercu-
losis complex. Additionally, exposure to NTM is responsible
for the low predictive value of the PPD test due to cross-
reactivity with similar antigens.

In this study, we described the protein profiles of five
NTM strains. Analysis of these profiles indicated the presence
of proteins that were both common to and specific to
each NTM strain. The common proteins can be utilised as
markers of prior exposure to NTM. They can potentially
provide a more specific diagnosis with a decreased number
of false positives. Also, the proteins that were identified in
the proteome of the NTM strains studied can be useful
in the development of new diagnostic tools and may help
explain the cross-reactivity between the PPD test and the
BCG vaccination as described above.
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