
Phylogeography and Genetic Variation of Triatoma
dimidiata, the Main Chagas Disease Vector in Central
America, and Its Position within the Genus Triatoma
Marı́a Dolores Bargues1*, Debora R. Klisiowicz1, Fernando Gonzalez-Candelas2, Janine M. Ramsey3, Carlota

Monroy4, Carlos Ponce5, Paz Marı́a Salazar-Schettino6, Francisco Panzera7,8, Fernando Abad-Franch9,

Octavio E. Sousa10, Christopher J. Schofield11, Jean Pierre Dujardin12, Felipe Guhl13, Santiago Mas-Coma1

1 Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain, 2 Departamento de Genética, Instituto Cavanilles de
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Abstract

Background: Among Chagas disease triatomine vectors, the largest genus, Triatoma, includes species of high public health
interest. Triatoma dimidiata, the main vector throughout Central America and up to Ecuador, presents extensive
phenotypic, genotypic, and behavioral diversity in sylvatic, peridomestic and domestic habitats, and non-domiciliated
populations acting as reinfestation sources. DNA sequence analyses, phylogenetic reconstruction methods, and genetic
variation approaches are combined to investigate the haplotype profiling, genetic polymorphism, phylogeography, and
evolutionary trends of T. dimidiata and its closest relatives within Triatoma. This is the largest interpopulational analysis
performed on a triatomine species so far.

Methodology and Findings: Triatomines from Mexico, Guatemala, Honduras, Nicaragua, Panama, Cuba, Colombia, Ecuador,
and Brazil were used. Triatoma dimidiata populations follow different evolutionary divergences in which geographical isolation
appears to have had an important influence. A southern Mexican–northern Guatemalan ancestral form gave rise to two main
clades. One clade remained confined to the Yucatan peninsula and northern parts of Chiapas State, Guatemala, and Honduras,
with extant descendants deserving specific status. Within the second clade, extant subspecies diversity was shaped by adaptive
radiation derived from Guatemalan ancestral populations. Central American populations correspond to subspecies T. d.
dimidiata. A southern spread into Panama and Colombia gave the T. d. capitata forms, and a northwestern spread rising from
Guatemala into Mexico gave the T. d. maculipennis forms. Triatoma hegneri appears as a subspecific insular form.

Conclusions: The comparison with very numerous Triatoma species allows us to reach highly supported conclusions not
only about T. dimidiata, but also on different, important Triatoma species groupings and their evolution. The very large
intraspecific genetic variability found in T. dimidiata sensu lato has never been detected in a triatomine species before. The
distinction between the five different taxa furnishes a new frame for future analyses of the different vector transmission
capacities and epidemiological characteristics of Chagas disease. Results indicate that T. dimidiata will offer problems for
control, although dwelling insecticide spraying might be successful against introduced populations in Ecuador.

Citation: Bargues MD, Klisiowicz DR, Gonzalez-Candelas F, Ramsey JM, Monroy C, et al. (2008) Phylogeography and Genetic Variation of Triatoma dimidiata, the
Main Chagas Disease Vector in Central America, and Its Position within the Genus Triatoma. PLoS Negl Trop Dis 2(5): e233. doi:10.1371/journal.pntd.0000233

Editor: Ricardo E. Gurtler, Universidad de Buenos Aires, Argentina

Received August 3, 2007; Accepted April 14, 2008; Published May 7, 2008

Copyright: � 2008 Bargues et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work benefited from international collaboration through the ECLAT network. Financial support for DNA sequencing was obtained from the
Projects ‘‘Chagas Disease Intervention Activities’’ (CDIA, Contract No. ICA4CT-2003-10049) and ‘‘European Commission Latin America Triatominae Network’’
(ECLAT, Contract No. IC18-CT98-0366) of the INCO-DEV and INCO-DC Programs of the European Commission (DG XII), Brussels, Belgium, Project No. 3042/2000 of
the Dirección General de Cooperación para el Desarrollo, Presidencia de Gobierno, Generalitat Valenciana, Valencia, Spain, and the Red de Investigación de
Centros de Enfermedades Tropicales - RICET (Projects No. C03/04, No. PI030545 and No. RD06/0021/0017 of the Program of Redes Temáticas de Investigación
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Introduction

American trypanosomiasis or Chagas disease is widespread in

Latin America from Mexico to Chile and southern Argentina.

Although present estimates of 10 to 12 million people infected with

the haemoflagellate protozoan species Trypanosoma cruzi represent 6–

8 million fewer cases than those reported in the 1980s [1], it remains

one of the most serious parasitic diseases of the Americas for its social

and economic impact [2]. Although it can also be transmitted by

blood transfusion or across the placenta from infected mothers, most

human contamination is attributed to insect vectors in poor rural or

periurban areas of Central and South America [1].

Chagas disease vectors are haematophagous reduviid (Hemip-

tera: Heteroptera) insects belonging to the subfamily Triatominae.

Species of Triatominae are usually grouped into 17 genera

forming five tribes, although other arrangements have been

proposed. Of these, Alberproseniini, Bolboderini, Cavernicolini

and Rhodniini are considered monophyletic, whereas Triatomini

is considered polyphyletic [3]. Among the latter, most of the

species (over 70) are included in the genus Triatoma, among which

two main clades appear in ribosomal DNA (rDNA) sequence

phylogenies, corresponding to species of North and Central

America and species of South America separated prior to the

closing of the isthmus of Panama about 3 million years ago [4–6].

Moreover, Triatoma species are distributed in three main

groupings: the Rubrofasciata group (mainly North American

and Old World species), the Phyllosoma group (mainly Mesoa-

merican and Caribbean), and the Infestans group (mainly South

American), each including different complexes and subcomplexes

in a classification which is progressively updated according to new

genetic and morphometric data [7].

A priori, all of the over 130 species currently recognized within

Triatominae seem capable of transmitting T. cruzi. Among the

species of greatest epidemiological significance as domestic vectors,

three belong to the genus Triatoma: T. infestans and T. brasiliensis

from South America, and T. dimidiata, distributed in Meso- and

Central America from Mexico down to Colombia, Venezuela,

Ecuador and northern Peru [3].

Triatoma dimidiata can be found in sylvatic, peridomestic and

domestic habitats. Non-domiciliated populations may act as

reinfestation sources and become involved in the transmission of

the parasite to humans [8,9]. This species includes morphologically

variable populations [10,11]. A molecular comparison of Triatomi-

nae, including many Central American species of the Phyllosoma

complex by means of rDNA second internal transcribed spacer (ITS-

2) sequences demonstrated an unusual intraspecific sequence

variability in a few T. dimidiata populations studied. This study even

revealed differences consistent with a specific status for populations

from the Yucatan peninsula, Mexico [4–6], thus opening a debate. A

large number of recent, multidisciplinary studies using RAPD-PCR,

genital structures, morphometrics of head characters, and antennal

phenotypes have shown that variation within this species seems

much greater than previously considered [8,12–16]. Morphometric

and cuticular hydrocarbon analyses suggest that a sylvatic population

from Lanquin, Guatemala, is undergoing a speciation process

[13,17]. Chromosomal variation and genome size suggest that T.

dimidiata may represent a complex of cryptic species (i.e. morpho-

logically indistinguishable, yet reproductively isolated taxa) [18].

The aim of the present work is to analyze the intraspecific

variability, haplotype profiling, phylogeography and genetic

polymorphism of populations of the species T. dimidiata, to get a

new framework able to facilitate the future understanding of the

diferring peculiarities of this crucial vector species throughout its

broad geographical distribution. This may also help in under-

standing the related differences in characteristics of Chagas disease

transmission and epidemiology, as well as in responses to control

initiatives in the countries concerned. After a deep analysis, it was

considered that the most convenient approach would be obtained

by using an appropriate marker able to furnish significant

information about evolutionary trends of variation on which to

construct the new baseline. This new baseline should be, whenever

possible, of sufficient weight as to allow its conclusions to be

reflected at systematic-taxonomic level.

For this purpose, the rDNA was preferred over mitochondrial

DNA (mtDNA) because of its mendelian inheritance, evolutionary

rates and overall recognized usefulness in systematics in all

metazoan organism groups because of including sequences which

allow to distinguish between species and between subspecies units.

The better fitting of rDNA for molecular systematics has already

been emphasized in large reviews on rDNA/mtDNA marker

comparisons in insects [19]. Ribosomal DNA includes excellent

genetic markers, because (i) the rDNA operon is tandemly

repeated and present in sufficiently high quantities among the

genome of an individual thus facilitating sequencing procedures;

(ii) the different genes and spacers of the rDNA follow a concerted

evolution which, with sufficient time, effectively homologizes the

many copies of nuclear rDNA within a genome [20]; this gives rise

to a uniformity of their sequences within all individuals of a

population and becomes extremely useful from an applied point of

view, because it is sufficient to obtain the sequence of only one

individual to characterize the local population it belongs to, that is,

all other individuals of that population will present the same

sequence; (iii) the usefulness of rDNA genes and spacers as genetic

markers at different evolutionary levels have already been verified

on a large number of very different eukaryotic organism groups

including insects, and consequently extensive knowledge on the

different rDNA fragments is available [21]. rDNA sequence

comparisons offer valuable information about the evolutionary

events in triatomine lineages and, by deducing the routes of

Author Summary

Chagas disease is a serious parasitic disease of Latin America.
Human contamination in poor rural or periurban areas is
mainly attributed to haematophagous triatomine insects.
Triatoma includes important vector species, as T. dimidiata in
Central and Meso-America. DNA sequences, phylogenetic
methods and genetic variation analyses are combined in a
large interpopulational approach to investigate T. dimidiata
and its closest relatives within Triatoma. The phylogeogra-
phy of Triatoma indicates two colonization lineages
northward and southward of the Panama isthmus during
ancient periods, with T. dimidiata presenting a large genetic
variability related to evolutionary divergences from a
Mexican-Guatemalan origin. One clade remained confined
to Yucatan, Chiapas, Guatemala and Honduras, with extant
descendants deserving species status: T. sp. aff. dimidiata.
The second clade gave rise to four subspecies: T. d. dimidiata
in Guatemala and Mexico (Chiapas) up to Honduras,
Nicaragua, Providencia island, and introduced into Ecuador;
T. d. capitata in Panama and Colombia; T. d. maculipennis in
Mexico and Guatemala; and T. d. hegneri in Cozumel island.
This taxa distinction may facilitate the understanding of the
diversity of vectors formerly included under T. dimidiata,
their different transmission capacities and the disease
epidemiology. Triatoma dimidiata will offer more problems
for control than T. infestans in Uruguay, Chile and Brazil,
although populations in Ecuador are appropriate targets for
insecticide-spraying.
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spreading of triatomine populations, they may also shed light on

the ability of different species to colonize new areas [5].

Within rDNA, ITS-2 was selected as marker because of its well-

known usefulness at species and subspecies levels, including the

differentiation of taxa within problematic groups, as is the case of

those comprising cryptic or sibling species of other insect groups

[22–24]. Moreover, the sequences of the ITS-2 have already

proved to be a useful tool in the analysis of species, subspecies,

hybrids and populations, and for inferring phylogenetic relation-

ships in Triatominae in general [4,5,6,25,26].

In order to be able to assess the ITS-2 evolutionary processes

followed by T. dimidiata populations, the ITS-2 sequences of many

members of the Phyllosoma, Rubrofasciata and Infestans groups

were obtained and analyzed. For this purpose, a large number of

rDNA ITS-2 sequences of Triatoma species from numerous

geographic origins in Mexico, Guatemala, Honduras, Nicaragua,

Panama, Cuba, Colombia, Ecuador, and Brazil was studied. Thus,

the nucleotide divergence limits between taxa within the lineage of

the genus Triatoma could be established. The present study on T.

dimidiata is the largest interpopulational analysis performed on a

triatomine species so far.

Materials and Methods

Triatomine materials
A total of 165 triatomine specimens representing 13 Triatoma

species of the Phyllosoma, Rubrofasciata and Infestans groups,

among which 137 specimens representing T. dimidiata from 64

different geographic origins, were used for sequencing, genetic

variation and phylogenetic analyses (Table 1; Figure 1). The

systematic classification recently proposed for the genus Triatoma

[7] is used here throughout.

Sequencing of rDNA ITS-2
For DNA extraction, one or two legs fixed in ethanol 70% from

each specimen were used and processed individually, as previously

described [5,27]. Total DNA was isolated by standard techniques

[28] and stored at 220uC until use. The complete ITS-2 fragment

was PCR amplified using 4–6 ml of genomic DNA for each 50 ml

reaction. Amplifications were generated in a Peltier thermal cycler

(MJ Research, Watertown, MA, USA), by 30 cycles of 30 sec at

94uC, 30 sec at 50uC and 1 min at 72uC, preceded by 30 sec at

94uC and followed by 7 min at 72uC. PCR products were purified

with Ultra CleanTM PCR Clean-up DNA Purification System

(MoBio, Solana Beach, CA, USA) according to the manufacturer’s

protocol and resuspended in 50 ml of 10 mM TE buffer (10 mM

Tris-HCl, 1 mM EDTA, pH 7.6). Sequencing was performed on

both strands by the dideoxy chain-termination method, and with

the Taq dye-terminator chemistry kit for ABI 3730 and ABI 3700

capillary system (Perkin Elmer, Foster City, CA, USA), using the

same amplification PCR primers [6].

Triatomine haplotype code nomenclature
The haplotype (H) terminology used in the present paper

follows the nomenclature for composite haplotyping (CH) recently

proposed [25]. Accordingly, ITS-2 haplotypes (H) are noted by

numbers (Table 1).

Sequence alignment
Sequences were aligned using CLUSTAL-W version 1.83 [29]

and MEGA 3.1 [30], and assembly was made with the Staden

Package [31]. The alignment was carried out using the Central,

Meso and South American Triatoma species studied together with

other species and populations whose sequences are available in

GenBank: T. phyllosoma (Accession Number AJ286881), T.

pallidipennis (AJ286882), T. longipennis (AJ286883), T. picturata

(AJ286884), and T. mazzotti (AJ286885) (Phyllosoma group,

Phyllosoma complex); T. barberi (AJ293590) (Rubrofasciata group,

Protracta complex) [5,6]; T. rubrovaria H1 (AJ557258) [32], T.

infestans CH1A (AJ576051), and T. sordida (AJ576063) [25]. The

ITS-2 sequence of Rhodnius prolixus (Triatominae: Rhodniini)

(AJ286882) [6] was used as outgroup.

Data deposition footnote
The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) acces-

sion numbers for the new ITS-2 rDNA sequences discussed in this

paper are: 31 haplotypes of T. dimidiata (AM286693–AM286723),

T. bassolssae AM286724, T. bolivari (AM286725), 2 haplotypes of T.

hegneri (AM286726, AM286727), T. mexicana (AM286728), 2

haplotypes of T. pallidipennis (AM286729, AM286730), T. ryckmani

(AM286731), T. flavida (AM286732), T. gerstaeckeri (AM286734), T.

rubida (AM286735), T. nitida (AM286733), T. maculata (AJ582027),

and T. arthurneivai (AM286736).

Phylogenetic inference
Phylogenies were inferred by maximum-likelihood (ML) using

PAUP*4.0b10 [33] and PHYMLv2.4.4 [34]. Maximum-likelihood

parameters and the evolutionary model were determined using the

hierarchical Likelihood Ratio Test (hLRTs) and the Akaike

Information Criterion (AIC) [35,36] implemented in Modeltest

3.7 [37] in conjunction with PAUP*4b10. To assess the reliability

of the nodes in the ML tree, a bootstrap analysis using 1000

pseudo-replicates was made with PHYML. Since haplotype

sequences for T. dimidiata individuals (populations) are quite

similar and potentially subject to homoplasy and recombination,

alternative procedures to phylogenetic tree reconstruction reveal-

ing their relationships were tested. Therefore, a median-joining

network analysis [38] was performed using Network version

4.1.1.2 (available from Fluxus Technology Ltd., http://www.

fluxus-engineering.com) with the variable positions in the multiple

alignment of the different ITS-2 haplotypes from T. dimidiata

populations.

Alternative methods of phylogenetic reconstruction allowing an

evaluation of the support for each node were also applied. A

distance-based phylogeny using the neighbor-joining (NJ) algo-

rithm [39] with the ML pairwise distances was obtained. Statistical

support for the nodes was evaluated with 1000 bootstrap

replicates, with and without removal of gapped positions. Finally,

a Bayesian phylogeny reconstruction procedure was applied to

obtain posterior probabilities (BPP) for the nodes in the ML tree.

We used the same evolutionary model as above implemented in

MrBayes 3.1 [40] with four chains during 1,000,000 generations

and trees were sampled every 100 generations. The last 9,000 trees

were used to obtain the consensus tree and posterior probabilities.

Genetic variation studies
Genetic variation within and among populations of T. dimidiata

was evaluated using DnaSP version 4 [41] and Arlequin 2000

[42]. Summary parameters include those based on the frequency

of variants (haplotype number and diversity) as well as some taking

genetic differences among variants into account (gene diversity,

polymorphic sites). A hierarchical analysis of molecular variance

(AMOVA) was performed using Arlequin. This analysis provides

estimates of variance components and F-statistics [43] analogs

reflecting the correlation of haplotype diversity at different levels of

hierarchical subdivision. Unlike other approaches for partitioning

genetic variation based on the analysis of variance of gene

frequencies, AMOVA takes into account the genetic relatedness

Phylogeography of T. dimidiata and Related Species
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Table 1. Triatoma species and samples studied, including ITS-2 sequence length and AT composition (in percentage).

Country Map No.
Preliminary
classification Sampling sites Haplotype code Sequence length % AT

PHYLLOSOMA GROUP: PHYLLOSOMA COMPLEX

1) TRIATOMA DIMIDIATA: 31 different haplotype sequences/137 specimens studied:

MEXICO 1 T. dimidiata Atoyac Tlacorrancho, Veracruz T.dim-H18 496 75.81

n = 41 2 T. dimidiata Atoyac-Manzanillo, Veracruz T.dim-H18 496 75.81

3 T. dimidiata Atoyac-Cordoba, Veracruz T.dim-H18 496 75.81

4 T. dimidiata Ursulo-Galan, Veracruz T.dim-H18 496 75.81

5 T. dimidiata Tanchahuil, San Luis Potosı́ T.dim-H18 496 75.81

6 T. dimidiata Barrio Tzitzi, San Luis Potosı́ T.dim-H18 496 75.81

7 T. dimidiata Huejutla, Hidalgo (3) T.dim-H18 496 75.81

8 T. dimidiata Atlapexco, Hidalgo T.dim-H18 496 75.81

9 T. dimidiata El Rosario, Tabasco T.dim-H18 496 75.81

10 T. dimidiata Cozumel island, Quintana Roo T.dim-H18 496 75.81

11 T. dimidiata Acomul, Hidalgo T.dim-H18 496 75.81

12 T. dimidiata Mesa de Tlanchinol, Veracruz T.dim-H19 494 75.71

13 T. dimidiata La Luz, Veracruz T.dim-H19 494 75.71

14 T. dimidiata Emiliano Zapata, Veracruz T.dim-H20 495 75.76

15 T. dimidiata Morelos T.dim-H21 497 75.85

16 T. dimidiata Cajones, Morelos T.dim-H21 497 75.85

17 T. dimidiata Huehuetla, Hidalgo T.dim-H22 494 75.71

18 T. dimidiata Chalcatzingo, Morelos T.dim-H23 496 75.60

19 T. dimidiata Santiago Cuixtla, Oaxaca T.dim-H23 496 75.60

20 T. dimidiata Hierba Santa, Oaxaca T.dim-H23 496 75.60

21 T. dimidiata Nopala, Oaxaca T.dim-H23 496 75.60

22 T. dimidiata Alcaraces, Cuauhtemoc, Colima T.dim-H24 496 75.40

23 T. dimidiata Paraı́so, Yucatán (3) T.dim-H25 493 75.66

24 T. dimidiata Palenque, Chiapas T.dim-H25 493 75.66

23 T. dimidiata Paraı́so, Yucatán T.dim-H26 489 75.46

23 T. dimidiata Paraı́so, Yucatán T.dim-H27 494 75.51

25 T. dimidiata Yaxkukul,Yucatán T.dim-H28 493 75.66

26 T. dimidiata Holbox island, Quintana Roo T.dim-H28 493 75.66

23 T. dimidiata Paraı́so, Yucatán T.dim-H28 493 75.66

27 T. dimidiata Izamal, Yucatán T.dim-H28 493 75.66

28 T. dimidiata Cozumel island, Quintana Roo (3) T.dim-H28 493 75.66

23 T. dimidiata Paraı́so, Yucatán T.dim-H28 493 75.66

29 T. dimidiata Chablekal, Mérida, Yucatán T.dim-H31 489 75.25

30 T. dimidiata Mapastepec, Chiapas T.dim-H1 497 76.06

31 T. dimidiata Tapachula, Chiapas T.dim-H3 497 76.26

GUATEMALA 32 T. dimidiata Jutiapa, Jutiapa (4) T.dim-H1 497 76.06

n = 37 33 T. dimidiata Agua Zarca, Jutiapa T.dim-H1 497 76.06

34 T. dimidiata Pueblo Nuevo Viñas, Santa Rosa T.dim-H1 497 76.06

35 T. dimidiata Piedra Pintada, Jutiapa (3) T.dim-H1 497 76.06

33 T. dimidiata Agua Zarca, Jutiapa T.dim-H2 496 76.01

36 T. dimidiata Escuintla, Escuintla (3) T.dim-H2 496 76.01

37 T. dimidiata San Andrés Sajcabaja, Quiché T.dim-H2 496 76.01

34 T. dimidiata Pueblo Nuevo Viñas, Santa Rosa T.dim-H2 496 76.01

33 T. dimidiata Agua Zarca, Jutiapa (2) T.dim-H3 497 76.26

36 T. dimidiata Escuintla, Escuintla T.dim-H3 497 76.26

34 T. dimidiata Pueblo Nuevo Viñas, Santa Rosa T.dim-H3 497 76.26

37 T. dimidiata San Andrés Sajcabaja, Quiché T.dim-H4 497 76.85

34 T. dimidiata Pueblo Nuevo Viñas, Santa Rosa T.dim-H8 497 76.06

Phylogeography of T. dimidiata and Related Species
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Table 1. cont.

Country Map No.
Preliminary
classification Sampling sites Haplotype code Sequence length % AT

35 T. dimidiata Aldea Piedra Pintada, Jutiapa T.dim-H8 497 76.06

38 T. dimidiata Lanquı́n, Alta Verapaz (4) T.dim-H10 496 76.01

39 T. dimidiata Chultún, Yaxhá, Petén (2) T.dim-H18 496 75.81

37 T. dimidiata San Andrés Sajcabaja, Quiché (2) T.dim-H18 496 75.81

40 T. dimidiata Yaxhá, Petén T.dim-H25 493 75.66

40 T. dimidiata Yaxhá, Petén (2) T.dim-H28 493 75.66

40 T. dimidiata Yaxhá, Petén (3) T.dim-H28 493 75.66

40 T. dimidiata Yaxhá, Petén T.dim-H30 491 75.56

HONDURAS 41 T. dimidiata Güinope, El Paraiso T.dim-H1 497 76.06

n = 20 42 T. dimidiata El Tablon, Yoro (2) T.dim-H2 496 76.01

43 T. dimidiata El Zapote, Yoro T.dim-H2 496 76.01

44 T. dimidiata El Salitre, Yoro T.dim-H2 496 76.01

45 T. dimidiata El Cacao, Francisco Morazán (2) T.dim-H2 496 76.01

46 T. dimidiata Orica, Francisco Morazán T.dim-H2 496 76.01

47 T. dimidiata Tegucigalpa, Francisco Morozán (2) T.dim-H2 496 76.01

48 T. dimidiata Corral Falso, Yoro (2) T.dim-H2 496 76.01

49 T. dimidiata El Salitre, Montaña, Yoro T.dim-H2 496 76.01

50 T. dimidiata Subirama, Yoro T.dim-H2 496 76.01

51 T. dimidiata San José, Choluteca T.dim-H6 496 76.01

48 T. dimidiata Corral Falso, Yoro T.dim-H9 496 75.81

43 T. dimidiata El Zapote, Yoro T.dim-H9 496 75.81

50 T. dimidiata Subirama, Yoro T.dim-H9 496 75.81

50 T. dimidiata Subirama, Yoro T.dim-H29 494 75.71

52 T. dimidiata El Paraiso, Yoro T.dim-H29 494 75.71

NICARAGUA 53 T. dimidiata Madriz T.dim-H7 497 75.65

n = 1

PANAMA 54 T. dimidiata Boquete, Chiriqui (3) T.dim-H16 497 76.06

n = 4 54 T. dimidiata Boquete, Chiriqui T.dim-H17 495 75.96

COLOMBIA 55 T. dimidiata Pore, Casanare T.dim-H11 497 75.85

n = 31 56 T. dimidiata Boavita, Boyacá (13) T.dim-H11 497 75.85

57 T. dimidiata San Joaquı́n, Santander (3) T.dim-H11 497 75.85

58 T. dimidiata Com. Los Kuises, SNSM Magdalena T.dim-H12 495 75.76

56 T. dimidiata Boavita, Boyacá (4) T.dim-H12 495 75.76

59 T. dimidiata Sierra Nevada, Santa Marta (4) T.dim-H12 495 75.76

56 T. dimidiata Boavita, Boyacá T.dim-H13 493 75.66

60 T. dimidiata San Onofre, Sucre (insectary) (2) T.dim-H14 497 76.06

56 T. dimidiata Boavita, Boyacá T.dim-H15 497 75.65

61 T. dimidiata Providencia island T.dim-H1 497 76.06

ECUADOR 62 T. dimidiata Guayas, Guayaquil T.dim-H5 497 75.85

n = 3 63 T. dimidiata Cerro del Carmen, Guayas, Guayaquil T.dim-H5 497 75.85

64 T. dimidiata Pedro Carbo, Guayaquil T.dim-H6 496 76.01

2) TRIATOMA BASSOLSAE: 1 sequence/2 specimens studied:

MEXICO 65 T. bassolsae Acatlán, Puebla (2) T.bas-H1 490 76.94

n = 2

3) TRIATOMA BOLIVARI: 1 sequence/1 specimen studied:

MEXICO 66 T. bolivari Oaxaca, Oaxaca T.bol-H1 501 76.85

4) TRIATOMA HEGNERI: 2 sequences/5 specimens studied:

MEXICO 67 T. hegneri Ruinas S.Gervasio, Cozumel isl., Q. Roo T.heg-H1 496 75.81

Phylogeography of T. dimidiata and Related Species

www.plosntds.org 5 May 2008 | Volume 2 | Issue 5 | e233



between molecular haplotypes. The hierarchical subdivision was

made at three levels. At the top level, different groups were defined

on the basis of the phylogenetic relationships for the different T.

dimidiata haplotypes obtained. The second level corresponded to

countries of sampling within each of these groups, and the third

level corresponded to the different haplotypes found in each

country within group. AMOVA reports components of variance at

the three levels under consideration (among groups, among

countries within groups, and within countries within groups) as

well as F-statistics analogs. Under the present scheme, FST is

viewed as the correlation of random haplotypes within countries

within groups, relative to that of random pairs of haplotypes

drawn from the whole species, FCT as the correlation of random

haplotypes within groups, relative to that of random pairs of

haplotypes drawn from the whole species, and FSC as the

correlation of the molecular diversity of random haplotypes within

countries within groups, relative to that of random pairs of

haplotypes drawn from the corresponding group [44]. Although in

the program used (only currently available for molecular variance

analysis) the choice for establishing an intermediate level is fully

arbitrary and has no influence on the final result of the comparison

between units at the higher level, these same analyses were

repeated by considering each haplotype, which may encompass

several individuals, as a separate group for this intermediate level,

because it could be argued that geopolitical country borders was

not an appropriate choice despite its interest from the point of view

of the control of Chagas disease. The statistical significance of

fixation indices was tested using a non-parametric permutation

approach [44]. Genetic differentiation between pairs of popula-

tions was evaluated by means of F-statistics [43]. Exact tests of

population differentiation were performed [45]. Slatkin’s linear-

ized FST’s [46,47] procedure was also followed to obtain estimates

of pairwise equilibrium migration rates, both among groups,

among countries within groups, and within countries for

those cases in which haplotypes from more than one group were

present.

Table 1. cont.

Country Map No.
Preliminary
classification Sampling sites Haplotype code Sequence length % AT

n = 5 68 T. hegneri Cedral, Cozumel isl., Quintana Roo (3) T.heg-H1 496 75.81

68 T. hegneri Cedral, Cozumel isl., Quintana Roo T.heg-H2 496 76.01

5) TRIATOMA MEXICANA: 1 sequence/1 specimen studied:

MEXICO 69 T.mexicana Itatlaxco, Hidalgo T.mex-H1 492 75.61

6) TRIATOMA PALLIDIPENNIS: 1 sequence/3 specimens studied:

MEXICO 70 T. pallidipennis Chalcatzingo, Morelos T.pal-H1 491 76.98

n = 3 71 T. pallidipennis San Gabriel, Jalisco T.pal-H2 490 76.94

72 T. pallidipennis Tecalitlan, Jalisco T.pal-H2 490 76.94

7) TRIATOMA RYCKMANI: 1 sequence/2 specimens studied:

GUATEMALA 73 T. ryckmani El Progreso, El Progreso (2) T.ryc-H1 500 76.00

n = 2

PHYLLOSOMA GROUP: FLAVIDA COMPLEX

8) TRIATOMA FLAVIDA: 1 sequence/4 specimens studied:

CUBA 74 T. flavida Peninsula of Guanahacabibes (4) T.fla-H1 493 78.70

n = 4

RUBROFASCIATA GROUP: RUBROFASCIATA COMPLEX: LECTICULARIA SUBCOMPLEX

9) TRIATOMA GERSTAECKERI: 1 sequence/1 specimen studied:

MEXICO 75 T. gerstaeckeri Tanchahuil, S. Luis Potosı́ T.ger-H1 483 76.81

10) TRIATOMA RUBIDA: 1 sequence/2 specimens studied:

MEXICO 76 T. rubida Mocorito, Nayarit T.rub-H1 516 77.71

n = 2 77 T. rubida San Martin, Jalisco T.rub-H1 516 77.71

RUBROFASCIATA GROUP: PROTRACTA COMPLEX

11) TRIATOMA NITIDA: 1 sequence/1 specimen studied:

GUATEMALA 78 T. nitida El Progreso, El Progreso T.nit-H1 490 76.33

INFESTANS GROUP: INFESTANS COMPLEX: MACULATA SUBCOMPLEX

12) TRIATOMA MACULATA: 1 sequence/4 specimens studied:

COLOMBIA 79 T. maculata Santa Marta, Magdalena (4) T.mac-H1 488 78.28

n = 4

INFESTANS GROUP: INFESTANS COMPLEX: RUBROVARIA SUBCOMPLEX

13) TRIATOMA ARTHURNEIVAI: 1 sequence/2 specimens studied:

BRAZIL 80 T.arthurneivai Espirito Santo do Pinhal T.art-H1 486 77.98

n = 2 Sao Paulo (Fiocruz) (2)

doi:10.1371/journal.pntd.0000233.t001
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Results

Sequence Analyses of Triatoma dimidiata Populations
The 137 ITS-2 sequences revealed the existence of 31 different

haplotypes in the T. dimidiata studied (T.dim-H1 to T.dim-H31)

(see Tables 1 and 2 for localities and countries). Their length was

489–497 base pairs (bp) (mean, 495.10) with a relative AT-biased

nucleotide composition of 75.25–76.85% (75.72%). Sequence

similarity analysis of these 31 haplotypes revealed four distinct

groupings: grouping 1 (T.dim-H1 to T.dim-H10); grouping 2

(T.dim-H11 to T.dim-H17); grouping 3 (T.dim-H18 to T. dim-

H24); and grouping 4 (T. dim-H25 to T. dim-H31) (Figure 2).

These four groupings appear linked to concrete wide geographical

areas including neighboring countries and regions. The only

exception is Providencia Island, which, although part of

Colombia, is located 720 km off the northern coast of Colombia

but only 240 km off the western coast of Nicaragua. No haplotype

presents a very broad geographical distribution.

The alignment of the 31 T. dimidiata haplotype sequences was

501 bp-long, of which 450 characters were constant and 24 were

parsimony-informative. The interrupted microsatellite (AT)4–5

TTT (AT)5–7 was detected between positions 47 and 73 in all

specimens studied. Variability in this microsatellite region and

their respective sequence positions are noted in Figure 2.

The 51 nucleotide variable positions detected including gaps

represented a 10.18% of polymorphic sites. The seven haplotypes

T.dim-H25 to T.dim-H31 are responsible for this high genetic

divergence (Figure 2). This genetic divergence decreases consid-

erably when two separate alignments are performed: (i) the first

includes T.dim-H1 to T.dim-H24 from all the seven countries

shows a divergence of 5.62% in a 498-bp-long alignment,

including 28 nucleotide variable positions, of which 6 (1.20%)

were transitions (ti), 13 (2.61%) transversions (tv) and 9 (1.81%)

insertions/deletions (indels); (ii) the second includes T.dim-H25 to

T.dim-H31 from only three countries (Mexico: localities of

Yucatan, Chiapas, Cozumel Island and Holbox Island; Guate-

mala: Peten; Honduras: Yoro Yoro) shows a divergence of 2.42%

in a 495-bp-long alignment, with 12 nucleotide variable positions,

of which 2 ti (0.40%) and 10 are indels (2.02%).

Sequence Analyses in the Phyllosoma and Rubrofasciata
Groups

ITS-2 sequences of T. bassolsae, T. bolivari, T. hegneri, T. mexicana,

T. pallidipennis, T. ryckmani, T. flavida, T. nitida, T. gerstaeckeri, and T.

rubida, including haplotype length and AT content are listed in

Table 1. The comparison analyses which include these ITS-2

sequences and those of the Phyllosoma and Rubrofasciata groups

(available in GenBank) provided 48 different haplotypes. Their

alignment resulted in a total of 551 characters including gaps, of

which 365 sites were constant and 99 parsimony-informative.

All the T. dimidiata haplotypes clearly differed from the

Phyllosoma, Flavida, Protacta and Rubrofasciata complex species

included in this analysis. Triatoma bassolsae differed in only one

deletion in position 489 from T. pallidipennis of Morelos, Mexico

(AJ286882). The T. pallidipennis sequence obtained represents a

Figure 1. Geographical distribution of the sampling sites furnishing the triatomine materials. Numbers correspond to sampling sites
listed in Table 1. N= Triatoma dimidiata; m = other Triatoma species studied.
doi:10.1371/journal.pntd.0000233.g001
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new haplotype (T.pal-H2) differing in only one deletion in position

31 from T. picturata and T. longipennis. The haplotype alignment of T.

bassolsae, T. longipennis, T. mazzotti, T. picturata, T. pallidipennis and T.

phyllosoma was 490 bp long showing a relatively small genetic diversity

of 1.83%, with only 5 mutations (1.02%) and 4 indels (0.81%). The

two T. hegneri haplotypes differ between each other in only 1 ti and,

when compared with T. dimidiata H18 to H24 from Mexico and

Guatemala, nucleotide differences found were only 1 ti and 2 tv.

Sequence Analyses in the Infestans Group
ITS-2 sequences of T. maculata and T arthurneivai, including

haplotype length and AT content are listed in Table 1.

The ITS-2 of T. maculata fits very well within sequences of the

Infestans complex species studied in the present work, a total of 6–

19 (13.7) mutations, namely 6–11 (7.25) ti and 0–10 (6.5) tv,

appearing when comparing the five Infestans complex species in

question. The material of Triatoma arthurneivai here analyzed is very

Figure 2. Interhaplotype sequence differences found in the rDNA ITS-2 of the Triatoma dimidiata populations analyzed. Numbers (to
be read in vertical) refer to positions obtained in the alignments made with CLUSTAL-W 1.8 and MEGA 3.3. . = identical; * = singelton sites (7);
$= parsimony informative positions (24); 2 = insertion/deletion. Rectangled area = microsatellite region. Horizontal lines separate the four major T.
dimidiata haplotype groupings according to sequence analyses.
doi:10.1371/journal.pntd.0000233.g002
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close to T. rubrovaria H1 (AJ557258), showing only 6 nucleotide

differences (1.22%), of which only 1 ti and 5 indels.

Phylogenetic Analyses
Two different phylogenetic approaches were performed with

the 31 T. dimidiata haplotypes, both yielding coincident results. A

maximum likelihood tree was reconstructed using the best model

of evolution as determined by the lowest AIC, which was GTR+I

(2Ln = 887.089), being the proportion of invariable sites (I) of

0.166. Three groups appeared with high support values indicating

that their differentiation was not due to random sampling of a low

variable sequence (tree not shown). The large group 1 encom-

passed haplotypes from all the countries, whereas groups 2

(Mexico and Guatemala) and 3 (Mexico, Guatemala and

Honduras) were more geographically restricted.

Alternatively, a median-joining network was reconstructed with

the 31 different T. dimidiata sequences using the variable sites in the

multiple alignment (Figure 3). This network showed the same

three groups found in the ML tree. Group 1 occupies a central

position in the network and is the most widespread and variable

group, so that it most likely corresponds to the ancestral or source

set. This is further reinforced by the direct relationship between

this group and the two others, more geographically restricted and

encompassing fewer variants, group 2 including samples from

Mexico and Guatemala, and group 3 including samples from these

two countries and Honduras. The group 1 source set would in turn

be derived from group 3, which might be interpreted as a

geographically restricted relict according to the phylogeographic

results. Moreover, sequence variants in group 1 are clustered in

two different subgroups, with genetic and geographical borders:

subgroup 1A includes sequences from Colombian Providencia

island, Ecuador, Guatemala, Honduras, Mexico (only South of

Chiapas) and Nicaragua; subgroup 1B encompasses sequences

from continental Colombia and Panama. The two closest

sequences of each subgroup differ in two sites, which might

correspond to haplotypes not found in this sampling.

The relevance of the ITS-2 differences among these T. dimidiata

groups and subgroups was assessed by comparison with other

Triatoma species. Therefore, a multiple, 562-nucleotide-long

alignment was obtained by incorporating 22 additional ITS-2

sequences. This set includes 53 ITS-2 sequences of Triatoma species

and, using R. prolixus as outgroup, a ML tree was obtained

(2Ln = 2648.5129) using the HKY+G model, according to the

AIC results with a gamma distribution shape parameter = 0.58.

This tree (Figure 4) shows that:

N the 31 T. dimidiata haplotypes appear within a highly supported

clade (95/97/100 in ML/NJ/BPP), distributed as follows: a

first large subclade, also very well supported (99/97/100),

comprising subgroup 1A, subgroup 1B, group 2, and group 3

of the network analysis; subgroup 1A (sequence grouping

1 = T.dim-H1 to T.dim-H10) includes populations from

Central America (Honduras, Nicaragua, Guatemala and

scattered haplotypes from Mexico, Ecuador and Providence

Island); interestingly, the haplotype T.dim-H10 corresponding

to phenetically peculiar specimens found in cave-dwellings of

Lanquin, Guatemala, appears independent although related to

the rest with very high supports; subgroup 1B (sequence

grouping 2 = T.dim-H11 to T.dim-H17) comprises popula-

tions from continental Colombia and Panama and appears as

a monophyletic haplotype cluster; group 2 (sequence grouping

3 = T.dim-H18 to T.dim-H24) shows a well supported branch

(91/92/100) and comprises populations from Mexico (Gulf

coast, high plains, and Cozumel island) and Guatemala,

including the two T. hegneri haplotypes; the second large clade

is also highly supported (97/96/100), corresponding to group 3

(sequence grouping 4 = T.dim-H25 to T.dim-H31) and

includes populations from the Yucatan peninsula, Holbox

and Cozumel islands and northern Chiapas (Mexico), northern

Honduras and northern Guatemala;

N T. bassolsae clusters together with T. phyllosoma, T. mazzotti, T.

longipennis, T. picturata and T. pallidipennis with very high support

(99/91/100 in ML/NJ/BPP) in a sister clade of T. dimidiata;

the separated location of the two T. pallidipennis haplotypes

indicates the marked similarity of all these taxa;

N T. mexicana and T. gerstaeckeri cluster together in a group basal

to both T. dimidiata and T. phyllosoma clades; the extremely high

values (100/99/100) supporting the monophyletic clade

including T. mexicana, T. gerstaeckeri, T. phyllosoma and close

species, and T. dimidiata, are worth emphasizing;

N T. barberi, T. nitida, T. rubida, T. ryckmani and T. bolivari cluster in

an unresolved branch, within which only T. ryckmani and T.

Figure 3. Median network for Triatoma dimidiata haplotypes based on rDNA ITS-2 sequences. The area of each haplotype is proportional
to the total sample. Small black-filled circles represent haplotypes not present in the sample. Mutational steps between haplotypes are represented
by a line. More than one mutational step is represented by numbers. H = haplotype. Blue: Colombia; orange: Panama; yellow: Mexico; red: Honduras;
lilac: Ecuador; ocher: Nicaragua; green: Guatemala.
doi:10.1371/journal.pntd.0000233.g003
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bolivari appear related with a high support; the insular species

T. flavida from Cuba appears as a basal lineage although with

insufficient support values;

N finally, the South American species T. rubrovaria, T. arthurneivai,

T. sordida, T. maculata and T. infestans cluster together with the

highest support.

Figure 4. Phylogenetic ML tree of Triatoma species and haplotypes within the Phyllosoma, Rubrofasciata and Infestans groups. The
scale bar indicates the number of substitutions per sequence position. Support for nodes a/b/c: a: bootstrap with ML reconstruction using PhyML
with 1000 replicates; values larger than 70%; b: bootstrap with NJ reconstruction using PAUP with ML distance and 1000 replicates; values larger than
70%; c: Bayesian posterior probability with ML model using MrBayes; values larger than 90%.
doi:10.1371/journal.pntd.0000233.g004
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Triatoma dimidiata groupings appeared well supported, with very

high bootstrap proportions (BP.90%) using ML and neighbor-

joining reconstruction and the highest Bayesian posterior proba-

bilities (BPP = 100%). Similar levels were found for other well

established Triatoma species, many of which showed substantially

lower support values in the three statistical measurements

employed. However, other species presented no ITS-2 nucleotide

differences (T. picturata and T. longipennis; T. mazzotti and T.

phyllosoma).

Genetic Variation Analyses
The phylogenetic analyses showed that samples from the same

country may belong to different clusters. This result, on its own, is

not enough to demonstrate the biological distinctiveness of the

corresponding populations. Sampled individuals may represent a

minor fraction of the total genetic variability in a highly

heterogeneous population and the sampling procedure might

have resulted, by pure chance, in the observed clustering of some

variants. Given that each of these clusters holds some genetic

variability of its own, the first task was to evaluate whether the

observed groupings were significantly different from each other, in

terms of genetic variation, by partitioning the observed genetic

variability at three different levels: among groups, among

populations (countries) within groups, and within populations. A

hierarchical analysis of molecular variance was used to test the null

hypothesis of no genetic differentiation among groups considering

variation at lower levels. This procedure was first applied to T.

dimidiata sequences using three levels as defined above (Table 3a).

Most of the genetic variation found was allocated to the among

groups level (80.24% of the total variation), with much lower

portions of variation assigned to differences among populations

within groups level (11.71%) and within populations level (8.05%),

although both were still statistically significant after 1000 pseudo-

random samples generated for testing. This indicates that, despite

genetic variation within and among populations at these three

levels, there is a substantial amount of genetic differentiation

among them that justifies their consideration as separate groupings

for further analysis. The same results were obtained, notwith-

standing small numerical differences due to the different numbers

of groups, when haplotypes instead of countries were considered at

the intermediate level (Table S1). The geographical fitting

represents in fact no surprise at all, taking into account that the

distribution of T. dimidiata covers different countries which are

more or less aligned following a north-south axis because of the

relatively slenderness of the Central American bridge. Hence, as

any of the two versions of the analyses conveys the same

information and leads to the same conclusions, and which one

should be reported is simply a matter of opinion, the first

considering countries becomes practically more useful

because Chagas disease control measures are organized at national

level.

The median-joining network reconstructed with the 31 different

T. dimidiata ITS-2 sequences revealed the existence of three distinct

groups (groups 1, 2 and 3), the first of which further subdivided

into two subgroups 1A and 1B. The same AMOVA procedure was

applied to ascertain whether these two subgroups could be

considered as distinct populations or not. The results (Table 3b)

indicate that a significant fraction (60.15%) of the total genetic

variation corresponds to differences between these two subgroups

which, correspondingly, could be considered as separate popula-

tions for the ensuing analyses.

Based on the four groups/subgroups previously described in the

median-joining network, a summary of relevant population genetic

parameters for T. dimidiata is presented in Table 4. Genetic

variation in T. dimidiata populations was quite evenly distributed,

with similar levels of nucleotide and haplotype diversities in the

four groups/subgroups considered. Nevertheless, for all the

parameters studied, subgroup 1A presented higher values than

the rest, although significance of the differences was only obtained

for haplotype diversity. A similar summary is shown for each

country sample within groups in Table S2.

Different estimates of h were obtained based on the expected

heterozygosity, the expected number of alleles, the number of

polymorphic sites and the nucleotide diversity. The four estimates

Table 3. Summary of analysis of molecular variance for Triatoma dimidiata populations.

Source of variation d.f. Sum of squares Variance components Percentage of variation Fixation Indices

a)

Among groups 2 528.273 6.732 Va 80.24 FCT = 0.802***

Among populations within groups 10 86.820 0.982 Vb 11.71 FST = 0.920***

Within populations 123 83.047 0.675 Vc 8.05 FSC = 0.593***

Total 135 698.140 8.389

b)

Among groups 1 68.257 1.4785 60.15 FCT = 0.602*

Among populations within groups 6 15.547 0.3007 12.23 FST = 0.724***

Within populations 77 52.267 0.6788 27.62 FSC = 0.307***

Total 84 136.071 2.4580

c)

Among groups 3 596.530 5.890 86.84 FCT = 0.868***

Among populations within groups 9 18.563 0.218 3.21 FST = 0.900***

Within populations 123 83.047 0.675 9.95 FSC = 0.244***

Total 135 698.140 6.783

(a) Three groups (1, 2, and 3), (b) two subgroups (1A vs 1B), and (c) four groups/subgroups (1A, 1B, 2 and 3) were considered as indicated in the text. Populations within
groups correspond to countries of sampling. ***: P,0.001; **: P,0.01. d.f. = degrees of freedom.
doi:10.1371/journal.pntd.0000233.t003
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were quite consistent for the four groups/subgroups and they

agreed in assigning a larger value to subgroup 1A.

Differences in the genetic composition of the four groups/

subgroups 1A, 1B, 2 and 3 have previously been shown to be

statistically significant according to analyses of molecular variance.

A further evaluation of this distinctiveness was made (Table 3c), in

which the four groups/subgroups were considered for the

AMOVA, in correspondence with the previous results. In this

case, the amount of among-group variation rose to 86.84% of the

total variation, whereas among population within groups and

within population levels they were substantially lower, 3.21% and

9.95% respectively.

Genetic differences within and among the ITS-2 locus for T.

dimidiata samples were further explored through pairwise compar-

isons, and estimates of average pairwise differences within and

among the four groups/subgroups considered were obtained

(Table 5). Subgroup 1A presented the largest value for within-

group pairwise differences. The within-population values were

much lower than among-populations comparisons. Among the

latter, the smallest number of differences was found between

subgroup 1A and 1B, in correspondence with their close

phylogenetic relationship. Subgroup 1B was the one with the

lowest overall number of pairwise differences, slightly below 1A.

On the contrary, the highest value of pairwise differentiation

corresponds to group 3, with almost 20 differences (corrected

estimate) when compared with any other group.

Within groups genetic differentiation was evaluated by compu-

tation of pairwise FST values for populations defined by country of

origin (Table S3). Since all groups/subgroups, with the only

exception of subgroup 1A, are characterized by one large (n.10)

and several small (n,10) populations, significance values for test of

genetic differentiation have to be interpreted cautiously. Hence,

Table 4. Summary of population genetic variation parameters from ITS-2 haplotypes in the Triatoma dimidiata populations.

Parameter Group1 Subgroup1A Subgroup1B Group2 Group3

Gene copies 85 51 34 27 24

Haplotypes 17 10 7 7 7

Polymorphic sites 23 13 9 7 11

Hap. diversity 0.8782 0.797 0.686 0.6353 0.6775

Std. error 0.0178 0.040 0.065 0.0972 0.0902

Pairwise diff. mean 3.2398 1.707 1.524 1.1510 1.6377

Std. error 1.6872 1.014 0.938 0.7670 1.0007

Nucleot diversity 0.0065 0.003 0.003 0.0023 0.0033

Std. error 0.0037 0.002 0.002 0.0017 0.0023

h (Het) 6.0371 3.105 1.668 1.3162 1.5990

S.D. h (Het) 1.1075 0.822 0.523 0.5710 0.6892

h (k) 6.1156 3.444 2.385 2.7281 2.9510

95 % C.I. for h (k) 3.476,10.432 1.668,6.785 1.009,5.308 1.134,6.223 1.213,6.838

h (S) 3.1911 2.445 1.223 0.5189 0.8034

S.D. h (S) 1.1040 0.976 0.636 0.3844 0.5094

h (p) 3.2398 1.707 1.524 1.1510 1.6377

S.D. h (p) 1.8694 1.125 1.043 0.8553 1.1155

Tajima’s D 21.261ns 21.572* 21.553* 20.536ns 20.6435ns

Ewens-Watterson 0.132ns 0.219ns 0.334ns 0.388ns 0.3507ns

Fu’s Fs 23.401ns 22.601ns 21.111ns 22.426* 21.4665ns

h= effective mutation rate estimated from equilibrium heterozygosity [h(Het)], number of alleles [h(k)], number of polymorphic sites [h(S)] and nucleotide diversity [h(p)].
The last 3 rows correspond to different statistics of neutrality at the population level. S.D. = standard deviation; C.I. = confidence interval. NS: P.0.05; * = P,0.05.
doi:10.1371/journal.pntd.0000233.t004

Table 5. Population average pairwise differences in Triatoma dimidiata populations.

Group 1 Subgroup1A Subgroup1B Group2 Group3

Group 1 3.240 - - 9.953 20.719

Subgroup1A - 1.707 4.922 10.325 21.118

Subgroup1B - 3.307 1.524 9.397 20.120

Group2 7.758 8.896 8.059 1.151 26.875

Group3 18.280 19.446 18.539 25.481 1.638

Above diagonal: Average number of pairwise differences between populations (pXY). Diagonal elements: average number of pairwise differences within population (pX).
Below diagonal: corrected average pairwise difference (pXY2(pX+pY)/2).
doi:10.1371/journal.pntd.0000233.t005
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there is no apparent differentiation between two populations in

subgroup 1B (Colombia2, n = 30, and Panama, n = 4) and

similarly in group 2 (Mexico2, n = 23, and Guatemala2, n = 4).

The only significant value found in group 3 corresponds to

Honduras3 (n = 2) and Guatemala3 (n = 7), for which FST = 0.529,

P,0.05. None of these two populations presented significant

differentiation with respect to the largest population in this group,

Mexico3 (n = 15). Subgroup 1A includes two large populations,

Honduras1 (n = 18) and Guatemala1 (n = 26), which presented a

highly significant FST = 0.193, P,0.001. Although this value,

under the assumption of migration-drift equilibrium, corresponds

to an estimate of 2.1 migrants per generation between both

populations, which would be enough to prevent their complete

differentiation, such estimations shall be verified by using larger

samples and markers better suited for population genetics analyses.

Comparisons between each of these two populations and the

smaller ones in subgroup 1A revealed that Honduras1 differed

from Mexico1, Guatemala1 was different from Ecuador and

Nicaragua, and none of them differed from the only two

individuals from Providencia island. Similar comparisons for all

pairs of populations assigned to different groups/subgroups

resulted in highly significant FST values (Table S4).

Discussion

Triatoma dimidiata, T. sp. aff. dimidiata and T. hegneri
The highest intraspecific ITS-2 variability (absolute nucleotide

differences including indels) known in Triatomini members is

2.70% (13/482) in T. infestans specimens collected throughout the

very wide geographical distribution of this species [25]. Hence, the

result of 10.18% ( = 51/501) detected in T. dimidiata (Figure 2)

appears to be pronouncedly outside the limits of the intraspecific

variability range known for Triatoma species. Group 3 is the main

responsible for such differences (Table 5) and shows a high 2.42%

divergence within itself, suggesting an old origin in the light of the

relatively reduced geographical area of distribution of these

haplotypes in Mexico (Yucatan, Chiapas, Cozumel Island and

Holbox Island), Guatemala (Peten) and Honduras (Yoro) only.

The time of divergence between group 3 and other T. dimidiata

populations was estimated to be of 5.9–10.5 million years ago

(Mya) according to a molecular clock analysis based on rDNA

evolutionary rates [4].

The divergence of 5.62% shown by the other 24 ITS-2

haplotypes (Figure 2) also appears to be too large, in spite of the

wide geographical area they occupy from Mexico down to

Ecuador, suggesting a speciation process. However, population

average pairwise differences between subgroup 1A, subgroup 1B

and group 2 are markedly lower than between these three and

group 3 (Table 5), and intragroup differences do fall within the

above-mentioned Triatomini range: 2.61% within subgroup 1A,

2.41% within subgroup 1B, and 2.01% within group 2.

Results indicate that several T. dimidiata populations are

following different evolutionary divergences in which geographical

isolation appears to have had an important influence (Figure 5). A

phenotypic consequence of that process had been observed by

other specialists before, who wrote about an assemblage of

morphologically variable populations [10]. More recently, signif-

icant head shape differences between populations showed a

separation between northern, intermediate and southern collec-

tions of T. dimidiata and also support an evolutionary divergence of

populations within this species [13].

Three subspecies were distinguished on the basis of morpho-

logical differences [48,49]: (i) T. d. dimidiata concerns the first

description of the species in Peru (no type specimen available; no

type locality assigned, but undoubtedly from northern Peru,

probably around the locality of Tumbes, near Ecuador) and

corresponds to most of the Central American forms; (ii) T. d.

maculipennis was proposed for specimens from Mexico (type

specimen in Zoologisches Museum Berlin) and corresponds to

forms with relatively short heads and large eyes; and (iii) T. d.

capitata was proposed for large size specimens typified by longer

heads and smaller eyes originally found in Colombia (type

specimen in the Academy of Sciences of California). However,

these subspecies became later synonymized after results of a

morphological re-examination which were interpreted as evidence

of a clinal variation along a north-south axis [50,51].

Present ITS-2 sequences and corresponding phylogenetic and

genetic variation analyses support the appropriateness to (i)

differentiate group 3 as a species of its own (here simply designed

as T. sp. aff. dimidiata to avoid further systematic confusion with

T. dimidiata, according to taxonomic rules), and (ii) re-assign

subspecific status for subgroup 1A, subgroup 1B and group 2.

Results of the present study do not support the rise of the above-

mentioned subspecific taxa to species level for the time being,

although it is evident that in the three cases relatively long

divergence processes have taken place. Similar genetic studies with

other molecular markers may contribute to a more complete

assessment of these evolutionary isolation and speciation

processes.

The taxon T. sp. aff. dimidiata concerns group 3. This species

seems to represent a relatively relict species with a distribution

restricted to the Mexican flat areas of the Yucatan peninsula and

the northern part of Chiapas state, the northern lowland of

Guatemala (and probably also Belize), and only one altitude-

adapted haplotype (T.dim-H29) in its most extreme border

populations in northern Honduras. The most widely spread

haplotype T.dim-H28 is also present in the small island of Holbox

and the large island of Cozumel, both near the Yucatan coast,

suggesting that this haplotype should be considered the oldest of

this species. This species is also of public health importance

because of its capacity to transmit Chagas disease [52,53] and the

control problems it poses [54,55].

The taxon T. d. dimidiata corresponds to subgroup 1A and

populations mainly from Guatemala and Honduras and second-

arily Mexico, Nicaragua and Ecuador. The population of the

Colombian island of Providence undoubtedly derives from the

most widely dispersed haplotype T.dim-H1 on the nearest

Caribbean coastal area of Central America and not from

continental Colombia. The present populations in Ecuador may

derive from introduced specimens originally from the Guatemala-

Honduras-Nicaragua region, relatively recently introduced by

humans [4], very probably in the period of the early colonializa-

tion of northwestern South America by the Spanish ‘conquista-

dores’ in which exchange activities between Central American

settlements and the Peruvian Tumbes area took place [56]. The

type specimens of the original description of the species in

northern Peru might also belong to populations derived from such

man-made introductions from Central America. The haplotype

T.dim-H10 of Lanquin, Alta Verapaz, Guatemala appears in the

network analysis as directly derived from an ancestor which gave

rise to the subspecies T. d. dimidiata. An isolation phenomenon in

caves may explain the albinic characteristics of the specimens

presenting this haplotype. These cavernicole specimens from Alta

Verapaz have already shown their peculiarity in morphometric

and cuticular hydrocarbon studies [13,17].

The taxon T. d. capitata corresponds to subgroup 1B and

populations from Colombia and Panama. The isthmus of Panama

and the separation/joining process of South and North America
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towards the end of the Pliocene (3–5 Mya) [57], in a period in

which several more or less closely separated islands appeared and

evolved up to their fusion into the isthmus, should have played a

major role in the isolation and subsequent divergence of these

southernmost T. dimidiata populations. The lack of relationship

between the haplotypes of Ecuador and those of Colombia is

worth mentioning, as the geographical closeness of these two

countries could have given rise to the erroneous hypothesis of

Colombian forms having derived from Ecuadorian populations. In

a recent study of three populations of sylvatic, peridomestic and

domestic T. dimidiata from Colombia, the estimated low genetic

distances based on RAPD analyses did not discriminate the

populations studied, indicating that they maintain the genetic

identity of a single recent common ancestor [9].

The taxon T. d. maculipennis corresponds to group 2 and

populations mainly from Mexico, but rarely found in Guatemala.

According to the network analysis, this subspecies seems to have

derived from group 1 probably by isolation in the Mexican part

northward from the isthmus of Tehuantepec. Similarly as for other

organisms including insects [58], the mountainous Sierra Madre

chain throughout southern Mexico and Guatemala areas near the

Pacific coast probably played also a role in that isolation process

through an area where T. sp. aff. dimidiata did not represent a

competition barrier, as T. sp. aff. dimidiata appears to be

preferentially a low altitude species in these two countries.

Southern Mexico (including the Yucatan peninsula and Chiapas

state) and almost the whole country of Guatemala (at least ten

departments) constitute a crucial evolutionary area, where a high

number of taxa, including T. d. dimidiata, T. d. maculipennis, and T.

sp. aff. dimidiata, overlap. In a morphometric analysis, populations

from San Luis Potosi and Veracruz in Mexico were indistinguish-

able while clearly different from populations from Yucatan in

Mexico and Peten in Guatemala [14]. The former correspond to

T. d. maculipennis and the latter to T. sp. aff. dimidiata. In

Guatemala, a high degree of genetic variation in T. dimidiata sensu

lato was shown by RAPD-PCR [12], demonstrating a limited gene

flow between different provinces, although barriers between the

Atlantic and Pacific drainage slopes did not appear to be

significant limiters of a gene flow, according to a hierarchical

analysis.

Chromosome analyses and DNA genome size revealed the

existence of three different cytotypes with different geographical

distributions [18]: (i) cytotype 1 corresponds to three different

taxa: T. d. maculipennis in Mexico (excluding Yucatán), T. d.

Figure 5. Phylogeography of Triatoma dimidiata sensu lato. Distribution and spreading routes of T. d. dimidiata, T. d. capitata, T. d. maculipennis,
T. d. hegneri and Triatoma sp. aff. dimidiata in Mesoamerica, Central America and the northwestern part of South America are represented according
to network analyses and genetic variation studies based on rDNA ITS-2 sequences.
doi:10.1371/journal.pntd.0000233.g005
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dimidiata in Guatemala (excluding Petén) and probably also El

Salvador; and T. d. capitata in Colombia; (ii) cytotype 2 was found

in two localities (Paraiso and Chablekal) around Mérida, Yucatan,

Mexico where the species T. sp. aff. dimidiata presents 5 different

haplotypes (T.dim-H25, T.dim-H26, T.dim-H27, T.dim-H28 and

T.dim-H31); (iii) cytotype 3 appeared in Yaxhá, Petén, Guate-

mala, where both T. d. maculipennis (T.dim-H18) and T. sp. aff.

dimidiata (T.dim-H25, T.dim-H28 and T.dim-H30) are present.

Sequencing of the same specimens studied [18] from Yaxhá

showed that cytotype 3 was found in specimens of T. sp. aff.

dimidiata of haplotype T.dim-H28 and T.dim-H30. Consequently,

chromosomal cytotypes 2 and 3 are both found in T. sp. aff.

dimidiata.

The two haplotypes of T. hegneri differ by only 3 mutations from

haplotypes of T. d. maculipennis. This reduced number of nucleotide

differences and the location of T. hegneri haplotypes within the

clade of T. dimidiata, basal to haplotypes of group 2 (Figure 4), does

not support its status as an independent species. The results

obtained suggest that it is an insular form of T. d. maculipennis.

Originally described from the island of Cozumel [3], a subspecific

status T. d. hegneri could be maintained only if morphological

characteristics allow a clear differentiation of the insular form, as

the phylogenetic analysis somehow separates it in a very close but

particular evolutionary line. Triatoma hegneri, although chromati-

cally distinguishable from most forms of T. dimidiata [50], is known

to produce fertile hybrids when experimentally crossed with T.

dimidiata (R.E. Ryckman, unpublished). Interestingly, the most

dispersed haplotypes of both T. d. maculipennis (T.dim-H18) and T.

sp. aff. dimidiata (T.dim-H28) are also present on the same island,

probably introduced through the intense human transport

between the mainland and the island.

The distinction between T. d. dimidiata (subgroup 1A), T. d.

capitata (subgroup 1B), T. d. maculipennis (group 2), T. sp. aff.

dimidiata (group 3), and T. d. hegneri contributes giving systematic/

taxonomic coherency to present knowledge about morphological

and genetic concepts in these taxa. From an ancestral form close to

T. sp. aff. dimidiata, it can be postulated that an original

diversification focus of T. dimidiata forms took place most probably

in Guatemala, with a southern spread into Panama and Colombia

to give the capitata forms and a northwestern spread into Mexico to

give the maculipennis forms (Figure 5). Thus, the results of the

present paper, obtained from a large amount of samples of T.

dimidiata from many different countries covering its whole latitude

range, gives rise to a new frame that is different from the previous

hypothesis about a clinal variation along a north-south axis, which

was formerly suggested to explain both morphological data [50]

and preliminary ITS-2 data from a reduced number of samples

[6].

Moreover, the distinction between these five entities may

facilitate the understanding of different vector transmission

capacities and epidemiological characteristics of Chagas disease

throughout the very large area where T. dimidiata sensu lato is

distributed, from the Mexican northern latitude limit up to the

Peruvian southern latitude limit [11]. Recent results obtained by

means of a population dynamics model indicate that T. dimidiata in

Yucatan, Mexico, is not able to sustain domestic populations, that

up to 90% of the individuals found in houses are immigrants, and

that consequently Chagas disease control strategies must be

adapted to a transmission by non-domiciliated vectors [59]. This

might be considered surprising because it does not fit the

domiciliation capacity of T. dimidiata in other places, but it

appears to be congruent if it is taken into account that in fact the

Yucatan vector in question is not T. dimidiata but a different species

T. sp. aff. dimidiata.

The results here obtained also suggest that T. d. dimidiata in

Ecuador is a good candidate for the design of appropriate vector

control intervention, similarly to domestic T. infestans populations

in countries such as Uruguay, Chile and Brazil within the

successful Southern Cone Initiative [60]. The control and even

eradication of T. d. dimidiata in Ecuador by means of insecticide-

spraying of its domestic habitats might be successful, if it is

considered that it is merely an introduced vector species in that

area, and a priori it would have difficulties in escaping from the

insecticide activity because of its non-adaptativeness to the sylvatic

environment in these two countries [61]. Unfortunately, such a

control initiative will not be so easy to carry out in Colombia, as

results prove that Colombian forms are authochthonous T. d.

capitata and not T. d. dimidiata derived from the Ecuadorian

introduced form. This fits with the existence of sylvatic populations

in Colombia and with the high genetic similarity of sylvatic,

peridomestic and domestic populations detected in that country

[9]. Similarly to in Colombia, results indicate that T. dimidiata will

offer, because of being authochthonous forms, more problems for

insecticide-spraying control in Central American countries than

introduced T. infestans in Southern Cone countries.

The other Meso- and Central American Triatoma Species
Triatoma bassolsae differs by only one deletion from T. pallidipennis

and appears in the branch of the 5 species traditionally included in

the Phyllosoma complex: T. longipennis, T. mazzotti, T. picturata, T.

pallidipennis and T. phyllosoma. The genetic differences between

these taxa are so reduced (sometimes even none at all), that there is

no support to maintain them as separated species. Such a low

number of nucleotide differences in the ITS is considered as

pertaining to organisms able to hybridize [62]. This fully fits the

capacity of these taxa to crossbreed and give fertile hybrids [63,64]

and agrees with the entomologist conclusion of applying only

subspecies level to them [49]. The divergence of members of the

phyllosoma complex is estimated at only 0.74–2.28 Mya by the

rDNA molecular clock [4], which also seems consistent with a

subspecific rank. All further ITS-2 studies have always reached the

same conclusion [5,6,65]. By analyzing many interfertility

experiments [64], it can be concluded that, in triatomines,

morphological differentiation appears to be faster than the

installation of reproductive or genetic barriers [66,67]. Rapid

morphological changes, associated with ecological adaptation, helps

to explain discordance between phenetic and genetic differentiation.

Triatomine species with consistent morphological differences would

arise through divergent ecological adaptation, a vision which fits with

‘‘evolutionary units’’ implying a different evolutionary direction

taken by some populations [67]. Until future reproductive isolation

thanks to ecological isolation is reached by these morphologically

different entities of the Phyllosoma complex, the subspecies concept

accurately fits for all these ‘‘evolutionary units’’ of the Phyllosoma

complex. ITS-2 results indicate that Triatoma bassolsae is one

additional taxon to be included in this situation, as has already

been suggested [65]. The comparison of the small genetic

divergences between these taxa, their distributions exclusively

restricted to regions of Mexico, and their different geographical

distribution areas slightly overlapping in their bordering zones [3]

suggest that genetic exchange might be impeding or delaying

definitive divergence processes to reach species level.

Genetic distances between the taxa of the Phyllosoma complex

found when analyzing different mtDNA genes proved to be similar

to those detected in ITS-2 at the 16S [68], but higher in CytB

[65,69], and COI [69]. This agrees with the evolutionary rates of

the protein-coding mtDNA genes which are pronouncedly faster

than the one of ITS-2. Moreover, aminoacid sequences of the
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CytB and COI genes show no one difference between the

Phyllosoma complex members studied (all are silent mutations or

synonymous substitutions) except one aminoacid difference

between two populations of the same species T. pallidipennis and

one in T. picturata versus the rest [69], which also fit with an

intraspecific variability. Additionally, it shall be taken into account

that (i) mtDNA becomes monophyletic more rapidly than does a

single nuclear gene and far more rapidly than a sample of several

nuclear genes, so that mtDNA may make inferences of species-

level monophyly erroneous [70], and (ii) the known great potential

of mtDNA to become monophyletic by selective sweeps can

decrease the time to monophyly of a clade and not be reflective of

the genealogical processes in the nuclear genome, advantageous

mutations occurring on mtDNA causing the entire mitochondrial

genome to become monophyletic because of the little or no

recombination they have [71]. The crossbreeding capacity and

hybrid viability among the Phyllosoma complex taxa in question is

well known and, taking into account that their geographical

distributions overlap in their border areas and there are no

sufficient ecological differences indicating a local spatial separa-

tion, it becomes very difficult to support them as separate species

from the evolutionary, biogeographical and ecological points of

view because there is apparently no barrier for a reproductive

isolation. Thus, the results of both ITS-2 and mtDNA genes fit

with such an evolutionary, subspecific divergence, when taking

into account the peculiarities of both nuclear and mitochondrial

markers.

Triatoma mexicana appears to be a good species and its location in

the phylogenetic tree fully supports its ascription to the Phyllosoma

complex, similarly as suggested by a phylogentic analysis by means

of a mtDNA CO1 fragment [69]. Surprisingly, T. gerstaeckeri

(Rubrofasciata group) clusters with T. mexicana, suggesting that it

should be included in the Phyllosoma complex. All these species,

i.e. T. phyllosoma (including its subspecies phyllosoma, longipennis,

mazzotti, picturata, pallidipennis and bassolsae), T. dimidiata (with its

three subspecies dimidiata, capitata and maculipennis, to which hegneri

shall be added), T. sp. aff. dimidiata, T. mexicana and T. gerstaeckeri

constitute a well defined clade for which the generic taxon Meccus,

proposed long ago [72], afterwards synonymized [50] and recently

tentatively revalidated [73], seem to appropriately fit. Previous

molecular studies, first with complete ITS-2 sequences [74] and

second with partial mtDNA 16S gene sequences [68], also indicate

that Meccus might be a valid taxon.

The revalidation of Meccus, as well as that of Nesotriatoma for

species of the Flavida complex, has not been accepted because of

the close relationship between T. flavida and the Phyllosoma

complex [7]. The results of the present study do, however, pose a

serious question concerning the inclusion of species as T. bolivari

and T. ryckmani in the Phyllosoma complex, as they appear to

cluster with T. rubida of the Rubrofasciata group with relatively

high support (83 and 96 in ML and BPP, respectively). A T. rubida

- T. nitida clade previously detected with weak support under

certain conditions in mitochondrial DNA marker analyses [69]

does not appear to be supported in the ITS-2 phylogeny.

Although not fully resolved in the tree obtained, the location of

the Cuban T. flavida as a species basal to all other North-Central

American Triatoma species may be interpreted as a consequence of

being a relict insular species close to the ancient first North-

Central American Triatoma colonizers. Further studies with other

genetic markers are needed to establish the position of T. flavida

more adequately.

The South American Triatoma Species
The very scarce ITS-2 sequence differences between T.

arthurneivai and T. rubrovaria, a species known in southern Brazil,

Uruguay and northern Argentina [75], pose doubts on whether to

keep the validity of T. arthurneivai as independent species. Recent

genetic and morphometric studies have already raised several

questions about T. arthurneivai, indicating that topotypes from

Minas Geraes may represent a species different from populations

of São Paulo State formerly also referred to T. arthurneivai and

suggesting that these São Paulo populations might probably

belong to T. wygodzinskyi [76]. This may explain the ITS-2 results,

as the two specimens analyzed in the present paper come in fact

from Espirito Santo do Pinhal, São Paulo State. Consequently,

material of typical T. wygodzinskyi should be sequenced and

compared to both true T. arthurneivai from Minas Geraes and T.

rubrovaria to ascertain the status of these three taxa.

The South American Triatoma species cluster together with

maximum support (100/100/100) and well separated from that of

the North and Central American species of the same genus, thus

supporting results of previous analyses which indicate an early

divergence of about 23–38 Mya between species of the northern

(Phyllosoma complex) and southern (T. infestans) continent [4,6].
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Control of Triatominae. Bogotá, Colombia: CIMPAT, Universidad de Los

Andes. pp 117–124.

27. Bargues MD, Mas-Coma S (1997) Phylogenetic analysis of lymnaeid snails based

on 18S rDNA sequences. Mol Biol Evol 14: 569–577.

28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. A Laboratory
Manual. 2nd Ed. Vols. I, II & III. New York, USA: Cold Spring Harbor

Laboratory, Cold Spring Harbor. 1647 p.

29. Tompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the

sensitivity and progressive multiple sequence alignment through sequence

weighting, positions-specific gap penalties and weight matrix choice. Nuc Acids
Res 22: 4673–4680.

30. Kumar S, Tamura K, Nei M (2004) MEGA 3: Integrate software for Molecular
Evolutionary Genetics Analysis and sequence alignment. Brief Bioinf 5:

150–163.

31. Staden R, Judge DP, Bonfield JK (2001) Sequence assembly and finishing
methods. Met Biochem Anal 43: 302–322.

32. Pacheco RS, Almeida CE, Costa J, Klisiowicz DR, Mas-Coma S, et al. (2003)
RAPD analyses and rDNA intergenic-spacer sequences discriminate Brazilian

populations of Triatoma rubrovaria (Reduviidae: Triatominae). Ann Trop Med

Parasitol 97: 757–768.

33. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and

Other Methods). [4.0beta]. Sinauer Associates, Sunderland, MA.

34. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate
large phylogenies by Maximum Likelihood. Syst Biol 52: 696–704.

35. Akaike H (1974) A new look at the statistical model identification. Ieee Trans
Automat Control 19: 716–723.

36. Posada D, Buckley TR (2004) Model selection and model averaging in

phylogenetics: advantages of the AIC and Bayesian approaches over likelihood
ratio tests. Syst Biol 53: 793–808.

37. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA
substitution. Bioinformatics 14: 817–818.

38. Bandelet HJ, Foster P, Rohl A (1999) Median-joining networks for inferring

intraspecific phylogenies. Mol Biol Evol 16: 37–48.

39. Saitou N, Nei M (1987) The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

40. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference

under mixed models. Bioinformatics 19: 1572–1574.

41. Rozas J, Sanchez-Delbarrio JC, Meseguer X, Rozas R (2003) DnaSP, DNA
polymorphism analyses by the coalescent and other methods. Bioinformatics 19:

2496–2497.

42. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated
software package for population genetics data analysis. Evol Bioinf Online 1:

47–50.

43. Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159.

44. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance

inferred from metric distances among DNA haplotypes: application to human
mitochondrial DNA restriction data. Genetics 131: 479–491.

45. Raymond M, Rousset F (1996) An exact test for population differentiation.
Evolution 49: 1280–1283.

46. Slatkin M (1991) Inbreeding coefficients and coalescent times. Genet Res 58:

167–175.

47. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium

populations. Evolution 47: 264–279.

48. Usinger R (1941) Notes and descriptions of neotropical Triatominae
(Hemiptera, Reduviidae). Pan-Pacific Entomol 17: 49–57.

49. Usinger R (1944) The Triatominae of North and Central America and the West
Indies and their public health significance. Pub Health Bull 288: 1–83.

50. Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera,

Reduviidae) and their significance as vectors of Chagas’ disease. Bull Am Mus
Nat Hist 163: 123–520.

51. Lent H, Jurberg J (1985) Sobre a variação intra-especifica em Triatoma dimidiata

(Latreille) e Triatoma infestans (Klug) (Hemiptera: Reduviidae). Mem Inst Oswaldo

Cruz 80: 285–299.

52. Dumonteil E, Gourbiere S, Barbera-Perez M, Rodriguez-Felix E, Ruiz-Piña H,
et al. (2002) Geographic distribution of Triatoma dimidiata and transmission

dynamics of Trypanosoma cruzi in the Yucatan peninsula of Mexico. Am J Trop
Med Hyg 67: 176–183.

53. Dumonteil E, Gourbiere S (2004) Predicting Triatoma dimidiata abundance and

infection rate: a risk map for natural transmission of Chagas disease in the
Yucatan peninsula of Mexico. Am J Trop Med Hyg 70: 514–519.

54. Dumonteil E, Ruiz-Piña H, Rodriguez-Felix E, Barbera-Perez M, Ramirez-
Sierra MJ, et al. (2004) Re-infestation of houses by Triatoma dimidiata after intra-

domicile insecticide application in the Yucatán Peninsula, Mexico. Mem Inst

Oswaldo Cruz 99: 253–256.

Phylogeography of T. dimidiata and Related Species

www.plosntds.org 18 May 2008 | Volume 2 | Issue 5 | e233



55. Guzman-Tapia Y, Ramirez-Sierra MJ, Escobedo-Ortegon J, Dumonteil E

(2005) Effect of hurricane Isidore on Triatoma dimidiata distribution and Chagas
disease transmission risk in the Yucatan peninsula of Mexico. Am J Trop Med

Hyg 73: 1019–1025.

56. Lavalle B (2005) Francisco Pizarro y la conquista del Imperio Inca. Pozuelo de
Alarcon, Spain: Editorial Espasa Calpe S.A. 338 p.

57. Vermeij GJ (1991) When biotas meet: understanding biotic interchange. Science
253: 1099–1104.

58. Morrone JJ (2006) Toward a synthesis of Mexican biogeography. Rev Mex

Biodiv 76: 207–252.
59. Gourbière S, Dumonteil E, Rabinovich JE, Minkoue R, Menu F (2008)

Demographic and dispersal constraints for domestic infestation by non-
domiciliated Chagas disease vectors in th Yucatan Peninsula, Mexico.

Am J Trop Med Hyg 78: 133–139.
60. Dias JCP, Schofield CJ (2004) Control of Triatominae. In: Maudlin I,

Holmes PH, Miles MA, eds. The Trypanosomiases. Wallingford, UK: CAB

International. pp 547–563.
61. Abad-Franch F, Paucar CA, Carpio CC, Cuba Cuba CA, Aguilar VHM, et al.

(2001) Biogeography of Triatominae (Hemiptera: Reduviidae) in Ecuador:
implications for the design of control strategies. Mem Ins Oswaldo Cruz 96:

611–620.

62. Remigio EA, Blair D (1997) Relationships among problematic North American
stagnicoline snails (Pulmonata: Lymnaeidae) reinvestigated using nuclear

ribosomal DNA internal transcribed spacer sequences. Can J Zool 75:
1540–1545.

63. Mazzotti L, Osorio MT (1940) Cruzamientos experimentales entre varias
especies de triatomas. Rev Med Mex 22: 215–222.

64. Usinger RL, Wygodzinsky P, Ryckman R (1966) The biosystematics of

Triatominae. Ann Rev Entomol 11: 309–330.
65. Martinez FH, Villalobos GC, Cevallos AM, De La Torre P, Laclette JP, et al.

(2006) Taxonomic study of the Phyllosoma complex and other triatomine
(Insecta: Hemiptera: Reduviidae) species of epidemiological importance in the

transmission of Chagas disease using ITS-2 and mtCytB sequences. Mol

Phylogen Evol 41: 279–287.

66. Gorla DE, Dujardin JP, Schofield CJ (1997) Biosystematics of Old World

Triatominae. Acta Trop 63: 127–140.
67. Dujardin JP, Panzera F, Schofield CJ (1999) Triatominae as a model of

morphological plasticity under ecological pressure. Mem Inst Oswaldo Cruz 94

(Suppl. I): 223–228.
68. Hypsa V, Tietz DF, Zrzavy J, Rego ROM, Galvão C, et al. (2002) Phylogeny

and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence
of a New World origin of the Asiatic clade. Mol Phylogen Evol 23: 447–457.

69. Pfeiler E, Bitler BG, Ramsey J, Palacios-Cardiel C, Markow TA (2006) Genetic

variation, population structure, and phylogenetic relationships of Triatoma rubida

and T. recurva (Hemiptera: Reduviidae: Triatominae) from the Sonoran Desert,

insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol Phylogen
Evol 41: 209–221.

70. Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical
species concept. Evolution 56: 1557–1565.

71. Ballard JWO, Rand DM (2005) The population biology of mitochondrial DNA

and its phylogenetic implications. Ann Rev Ecol Evol Syst 36: 621–642.
72. Stal C (1859) Monographie der Gattung Conorhinus und Verwandten. Berliner

Entomologische Zeitschrift 3: 99–117.
73. Carcavallo RU, Jurberg J, Lent H, Noireau F, Galvao C (2000) Phylogeny of the

Triatominae (Hemiptera, Reduviidae). Proposals for taxonomic arrangements.

Entomologı́a y Vectores 7 (S1): 1–99.
74. Marcilla A, Bargues MD, Abad-Franch F, Panzera F, Carcavallo RU, et al.

(2002) Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species
(Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi. Inf Gen

Evol 1: 225–235.
75. Pacheco RS, Almeida CE, Klisiowicz DR, Costa J, Pires MQ, et al. (2007)

Genetic variability of Triatoma rubrovaria (Reduviidae: Triatominae) from Brazil,

Argentina and Uruguay as revealed by two different molecular markers. Parasite
14: 231–237.

76. Santos SM, Lopes CM, Dujardin JP, Panzera F, Perez R, et al. (2007)
Evolutionary relationships based on genetic and phenetic characters between

Triatoma maculata, Triatoma pseudomaculata and morphologically related species

(Reduviidae: Triatominae). Inf Gen Evol 7: 469–475.

Phylogeography of T. dimidiata and Related Species

www.plosntds.org 19 May 2008 | Volume 2 | Issue 5 | e233


