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Bacterial infection remains one of the leading causes of death worldwide, and the
options for treating such infections are decreasing, due the rise of antibiotic-resistant
bacteria. The pharmaceutical industry has produced few new types of antibiotics in
more than a decade. Researchers are taking several approaches toward developing
new classes of antibiotics, including (1) focusing on new targets and processes, such
as bacterial cell–cell communication that upregulates virulence; (2) designing inhibitors
of bacterial resistance, such as blockers of multidrug efflux pumps; and (3) using
alternative antimicrobials such as bacteriophages. In addition, the strategy of finding
new uses for existing drugs is beginning to produce results: antibacterial properties have
been discovered for existing anticancer, antifungal, anthelmintic, and anti-inflammatory
drugs. In this review, we discuss the antimicrobial properties of gallium compounds,
5-fluorouracil, ciclopirox, diflunisal, and some other FDA-approved drugs and argue
that their repurposing for the treatment of bacterial infections, including those that are
multidrug resistant, is a feasible strategy.
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Introduction

New Approaches to Combat Bacterial Infections on the Verge of the
Post-Antibiotic Era
Since the pharmaceutical industry has not produced a new class of antibiotics for more than a
decade (Walsh and Wencewicz, 2014) and the continuing rise of antibiotic resistance is a major
health concern, the World Health Organization warned that we may enter a “post-antibiotic era”
within this century, and they propose that urgent actions be taken (Aryee and Price, 2014). In
addition, a recent estimate by the British government and the Welcome Trust warned that by
the year 2050 there will be 300 million premature deaths and up to £64 trillion lost to the global
economy due to bacterial infections. Therefore, research is now being directed toward (1) new
types of antimicrobials, such as peptides (Seo et al., 2012), (2) novel therapeutic agents like bac-
teriophages (Abedon et al., 2011; Chan et al., 2013), (3) inhibiting bacterial virulence by blocking
quorum sensing (QS; Kaufmann et al., 2008; Antunes et al., 2010; Rasko and Sperandio, 2010), and
(4) targeting systems that confer resistance against antibiotics, such as multidrug efflux pumps
(Lomovskaya and Watkins, 2001; Kaatz, 2002). Each of these approaches has faced significant
difficulties. Antimicrobial peptides are expensive, toxic, and subject to proteolysis (Seo et al., 2012);
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bacteriophages are attacked by the immune system, and bacteria
soon develop resistance to them (Brussow, 2012); and resistance
against canonical QS inhibitors is possible (Maeda et al., 2012;
García-Contreras et al., 2013b,c; Kalia et al., 2014).

Another approach to dealing with bacterial infections is to
repurpose existing drugs as antibiotics or virulence inhibitors.
This approach has several advantages, including avoiding the
high costs and long development times for producing new
antimicrobials, and also being able to utilize compounds with
known pharmacological properties, and as is discussed here (see
also Table 1), although the approach to find alternative antimi-
crobials by evaluating drugs with other approved uses is relatively
new, there are at least a tens of feasible candidates with promising
in vitro and in vivo (at least for some of them) antibacterial prop-
erties, being the diversity of the active compounds remarkable
and their molecular targets diverse, and in some cases unex-
ploited by conventional antimicrobials, it can be anticipated that
a more extensive search for ideal candidates will continue to iden-
tify several yet undiscovered promising drugs, in fact recently,
the UK and US launched programs to study de-prioritized drugs
to find new therapeutic uses for them (Mullard, 2012). In this
work we discuss the antimicrobial effects of attractive anticancer,
anti-fungal, and anti-inflammatory drugs and argue that at least
some of them are ideal candidates for repurposing as antibacterial
agents, while others deserve further in vitro and in vivo research
to fully evaluate their antibacterial potential.

Anticancer Drugs as Antimicrobials
Due the similarities between cancer cells and pathogenic bacteria
it is expected that some anti-neoplastics would be also effec-
tive against bacteria. In fact, the anticancer drugs daunorubicin
and doxorubicin were originally isolated in 1939 as antibiotics.
Nevertheless, they were found to be too toxic to be used for
infections. In 1960, however, their antitumor properties were dis-
covered (Weiss, 1992), and they are now utilized for the treatment
of cancer. By the same token, some drugs that were originally
developed as anti-neoplastics are effective at attenuating growth
of microbial pathogens, and some of them have shown promising
results in animal models and clinical trials. In the following sec-
tion, the antimicrobial properties of gallium and 5-fluorouracil
are discussed.

Gallium
Gallium, a group IIIA element, has no known essential biolog-
ical function but displays diverse biological activities. Many of
gallium’s activities derive from its chemical similarities to ferric
iron (Fe3+): Ga3+ and Fe3+ have remarkably similar ionic radii,
electronegativities, electron, and ligand affinities, and coordina-
tion geometries (Bernstein, 1998). This allows Ga3+ to follow
many of the uptake and transport pathways for Fe3+. It is the
differences between Ga3+ and Fe3+, however, that are responsi-
ble for gallium’s therapeutic effects and low toxicity. Unlike Fe3+,
which is easily reduced to a divalent state, Ga3 cannot partic-
ipate in redox reactions under physiologic conditions. Ga will
therefore not function in enzymes requiring iron, and will not
become incorporated in heme, avoiding toxicity from interfer-
ence with oxygen transport and cytochrome-mediated reactions

(Hedley et al., 1988). Clinically, citrated Ga(NO3)3 for intra-
venous injection (Ganite R©) is approved for use for the treatment
of hypercalcemia of malignancy.

Gallium in the Treatment of Cancer
In 1951 it was shown that 72Ga could be used for the early detec-
tion and palliative treatment of bone malignancies. In the 1970s,
with the introduction of the radioisotope 67Ga, diagnostic gallium
scintigraphy became widespread. 67Ga-scans are particularly sen-
sitive to lymphomas, sarcomas, bone tumors, and hepatocellular
carcinoma. Many of the 67Ga-avid cancers appear to be those
that are most susceptible to therapeutic Ga treatment (Bernstein,
2013). Currently, 67Ga scanning is used in the diagnosis and stag-
ing of lymphomas. Ga(NO3)3 has demonstrated clinical efficacy
in multiple myeloma, bladder cancer, lymphoma, ovarian cancer,
and hepatocellular carcinoma (Bernstein, 1998; Bernstein et al.,
2011).

Gallium Compounds have Potent
Antimicrobial Effects
The recognition of gallium as an antimicrobial was made in 1931
when it was used to treat experimental syphilis in rabbits and try-
panosomiasis in mice (Levaditi et al., 1931). Surprisingly, there
was a gap of more than 40 years until Ga was again reported to
have antimicrobial activity (Srivastava et al., 1973). The antibac-
terial activity of Ga compounds both in vitro and in vivo has now
been demonstrated against several important bacterial pathogens,
such as Mycobacterium tuberculosis, Pseudomonas aeruginosa
(Kaneko et al., 2007), Acinetobacter baumannii (Antunes et al.,
2012; de Leseleuc et al., 2012), and Staphylococcus aureus. For
a detailed description of gallium’s antibacterial effects, see the
recent reviews by (Bernstein, 2013; Bonchi et al., 2014; Minandri
et al., 2014) and Table 2.

Mechanisms of Antimicrobial Activity for
Gallium
Gallium is a non-redox Fe (III) analog that acts as a “Trojan
horse” due to its chemical similarity to Fe(III). In Menon et al.
(1978) reported that Ga is taken up by several bacteria and
fungi. Later it was shown that Pseudomonas fluorescens inter-
nalized Ga (Al-Aoukaty et al., 1992) and it was suggested that
the transport of Ga into P. aeruginosa does not involve its main
iron transporters, the siderophores pyoverdine and pyochelin
(Kaneko et al., 2007); although recently it was discovered that
the pyochelin system is likely able to transport moderate gal-
lium concentrations (Frangipani et al., 2014). In addition, Ga
inhibits Fe(III) transport through interference with pyoverdine:
by decreasing its production, through interference with the pvdS
sigma factor, and by directly binding pyoverdine and hence
decreasing Fe(III) uptake (Kaneko et al., 2007).

Currently, other than pyochelin, HitAB is the only Ga trans-
porter known in P. aeruginosa (García-Contreras et al., 2013a).
However, hitA/hitBmutants of P. aeruginosa still can take up Ga,
suggesting the existence of secondary Ga transporters (García-
Contreras et al., 2013a), Although pyochelin delivers iron trough
the outer membrane transporter, FptA, the possibility that it also
internalizes it via the HitB membrane protein remains to be
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TABLE 1 | New strategies to combat bacterial infections.

Strategy Examples Advantages Disadvantages

Develop new
antibiotics

Daptomycin
Novel oxazolidinone
antibacterial agents

Optimized for inhibiting bacterial growth Only two new clasess of antibiotics had
been developed in the past 20 years
Not a priority for the pharmaceutical
companies
Scaffolds are scarce

Develop new types of
antimicrobials

Antimicrobial peptides
Bacteriophages

New targets, new action mechanisms Antimicrobial peptides: expensive, toxic,
and subject to proteolysis
Bacteriophages: attacked by the immune
system, prone to develop resistance

Develop new
anti-virulence drugs

Quorum sensing inhibitors
Inhibitors of bacterial
secretion systems

Targeting virulence instead of growth potentially could
decrease resistance

Quorum sensing inhibitors: resistance
mechanisms had been found
Not effective against some clinical strains

Target resistance
mechanisms

Multidrug efflux pumps
inhibitors

Will allow the re-utilization of already non-effective antibiotics Bacteria usually have several
simultaneous drug resistance
mechanisms

Drug repurposing for
antibacterial and
anti-virulence drugs

Ga containing compounds
5-FU
Ciclopirox
Diflunisal
Statins
Pentetic acid

Avoiding the high costs and long development times of novel
antimicrobials
Known pharmacological properties, known side effects, doses,
interactions with other drugs, etc
New targets, new action mechanisms
Ample repertoire, high versatility
Effective against several recalcitrant pathogens, including
MDR.

Not optimized for antibacterial or
antivirulence effects
Ga containing compounds: their broad
spectrum activity could be
counterproductive damaging healthy
host tissues, particularly fast growing
cells with high iron acquisition
5-FU: high toxicity

explored. Due to its similarity to iron, it is hypothesized that Ga
inhibits several Fe-redox dependent processes, such as iron trans-
port, respiration, DNA replication, and reactive oxygen species
(ROS) protection. Inhibition of Fe(III) transport by Ga was first
demonstrated for intraphagosomal M. tuberculosis (Olakanmi
et al., 2000). The same group demonstrated that for Francisella
novicida and Francisella tularensis, Ga inhibits iron acquisition
from lactoferrin or transferrin in vitro and in vivo inmacrophages
(Olakanmi et al., 2010). Regarding the effects of Ga on protection
against ROS, it was shown that for F. tularensis, the addition of
10 μM Ga-transferrin or Ga-lactoferrin decreased up to 70% the
activity of Fe-containing catalase and Fe-cofactored SOD, render-
ing the cells more sensitive to H2O2. In P. fluorescens, prolonged
exposure to Ga decreased the iron content in catalase and its
activity (Beriault et al., 2007). Also, for P. fluorescens, Ga dis-
rupted oxidative phosphorylation by inhibiting the respiratory
complexes. In addition, Ga inactivated aconitase and fumarase
A, two Fe-dependent enzymes (Chenier et al., 2008). The effects
of Ga on the global metabolism of P. aeruginosa were recently
investigated by metabolomics: 64 metabolites showed significant
changes between Ga-free and Ga-citrate cells (Rzhepishevska
et al., 2011).

Due to the very promising antibacterial effects of Ga, the
repurposing of Ga(NO3)3 and other Ga compounds for treat-
ing MDRbacterial infections has been suggested recently (Bonchi
et al., 2014). In addition, considerable progress has been recently
made in the development of Ga delivery technologies, developing
materials like gallium-doped phosphate-based glasses (Valappil
et al., 2009) and gallium-carboxymethyl cellulose (Valappil et al.,
2013). These materials enable controlled Ga release and are
effective at killing P. aeruginosa and, in the case of the glasses,
other important pathogens such as MRSA and Clostridium

difficile. Other promising biomaterials that incorporate gallium
are mesoporous bioactive glass scaffolds (Shruti et al., 2013),
Ga-containing phosphosilicate glasses (Franchini et al., 2012;
Lusvardi et al., 2013) and Ga grafted titanium implants which
decrease biofilm formation of oral bacteria such as Streptococcus
mutans (Cochis et al., 2015). Such novel materials may eventu-
ally be used in other clinical applications, for example to coat
catheters and medical prosthetic devices.

Bacterial Adaptation and Resistance to
Gallium
One of the main mechanisms of gallium’s antibacterial activity
may be the generation of ROS (Beriault et al., 2007; Chitambar,
2010). Consistent with this effect, P. fluorescens exposed to 1 mM
Ga-citrate has high amounts of oxidized lipids and proteins.
Such cells, however, respond to Ga by increasing the synthe-
sis of enzymes that produce NADPH and by increasing SOD
(Beriault et al., 2007). An increase in NADPH would provide the
reductive power for the detoxification of ROS by glutathione per-
oxidase/reductase (Perry et al., 1991) and would protect catalase
from inactivation by H2O2 (Kirkman et al., 1999). In addition, in
the presence of Ga, P. fluorescens compensates for the loss of its
fumarase A activity by overexpressing Fe-independent fumarase
C. In order to maintain the oxidation of NADH, an NADH oxi-
dase that is absent in the control cells is induced (Chenier et al.,
2008). Also, pyocyanin overexpression helps cells cope with Ga
toxicity (García-Contreras et al., 2013a). This protection may be
due its capacity to reduce Fe(III) to Fe(II), which would not be
affected by Ga competition. Accordingly, lower concentrations of
Fe(II) than of Fe(III) are needed to protect the cells against Ga
(García-Contreras et al., 2013d). This fact may be clinically rele-
vant, since Fe(II) is increasingly available to P. aeruginosa during
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TABLE 2 | Antibacterial activities of the reviewed drugs.

Drug Therapeutic use Antibacterial activity in vitro Antibacterial activity in vivo Reference

Gallium compounds Gallium nitrate: treatment of
hypercalcemia of malignancy

Growth inhibition of several
recalcitrant bacterial pathogens
(including clinical isolates) such as:
Gram (−) Pseudomonas aeruginosa y
A. baumanii and Gram (+) like
Mycobacterium tuberculosis

Effective against syphilis
(Treponema cuniculi) in rabbits
and trypanosomiasis in mice,
guinea pigs, and monkeys
Acute and chronic mice
infections of P. aeruginosa
A. baumannii infections in
caterpillar and mice

Levaditi et al. (1931),
Olakanmi et al. (2000),
Kaneko et al. (2007), DeLeon
et al. (2009), Antunes et al.
(2012), de Leseleuc et al.
(2012)

5-Florouracil Anticancer drug
Treatment of actinic keratosis
and Bowen’s disease

Growth inhibition of Gram (+) and (−)
bacterial species
Inhibition of biofilm formation
Repression of QS in P. aeruginosa

Successful in clinical trials in
humans, as external coating of
central venous catheters

Hussain et al. (1992), Ueda
et al. (2009), Walz et al.
(2010)

Ciclopirox Antifungal Bacteriostatic and bactericide activity,
depending on concentration used, in
laboratory and clinical isolates

Not yet tested Carlson-Banning et al. (2013)

5-fluorocytosine Antifungal Inhibition of virulence factor
production by P. aeruginosa

Suppresses P. aeruginosa
pathogenicity in a mouse
model of lung infection

Imperi et al. (2013a)

Azithromycin Antibiotic Inhibition of QS systems of P.
aeruginosa

Clinical evidence and clinical
trials demonstrate efficacy in
the treatment of chronic
pulmonary infections of P.
aeruginosa

Imperi et al. (2014)

Niclosamide Antihelmintic Inhibition of QS systems of P.
aeruginosa

Reduction of P. aeruginosa
pathogenicity in an insect
model

Imperi et al. (2013b)

Diflunisal Non-steroidal anti-inflammatory Potent virulence inhibitor for the
USA300 strain of methicillin-resistant
Staphylococcus aureus (MRSA)

Not yet tested Khodaverdian et al. (2013)

Statins Lower plasma cholesterol levels Reduction of virulence factor
production of P. aeruginosa
Broad spectrum antibacterial effects

Inhibition of S. pneumoniae
attachment to lung and
vascular tissue

Rosch et al. (2010)

Pentetic acid Preparation of
radiopharmaceuticals treatment
of iron-storage disease and
poisoning from heavy metals

Reduction of virulence factor
production of P. aeruginosa

Effective to alleviate mice
airway infections

Gi et al. (2014)

Terfenadine Antihistamine Inhibit growth of several pathogenic
bacteria, including S. aureus and M.
tuberculosis

Not yet tested Perlmutter et al. (2014)

Zafirlukast Treatment of asthma Antimycobacterial Not yet tested Pinault et al. (2013)

the course of an infection, and it promotes pulmonary infections
in CF patients (Hunter et al., 2013).

Moreover, the overexpression of the siderophore pyover-
dine in P. aeruginosa may also promote gallium resistance,
since it is likely able to sequester extracellular Ga, prevent-
ing its entrance to the cell. Adding pyoverdine to cultures
increases their Ga tolerance (Kaneko et al., 2007; Frangipani
et al., 2014). In contrast, it was recently demonstrated that the
disruption of pyochelin biosynthesis and uptake increases the
MIC50 for gallium two–fourfold in the P. aeruginosa PAO1
strain (Frangipani et al., 2014). Interestingly, restricting gallium’s
growth inhibitory effects by pyoverdine sequestration strongly
decreases the development of bacterial resistance (Ross-Gillespie
et al., 2014).

Another important property of Ga compounds is that
they modulate the expression of several virulence factors in

P. aeruginosa. For example, they decrease the expression of
pyoverdine (Kaneko et al., 2007; García-Contreras et al., 2013d).
Depending in the growth conditions, concentrations, and per-
haps on the particular gallium compound, gallium can either
decrease (Kaneko et al., 2007; Valappil et al., 2013) or promote
(García-Contreras et al., 2013d) biofilm formation. Although
the molecular processes involved in the modulation of viru-
lence factors by gallium are still unknown, gallium’s role may
be related to its ability to create a state of iron deficiency, since
iron starvation strongly promotes virulence (García-Contreras
et al., 2013d). Although Ga has proven effective to alleviate
diverse animal infections, whether growth sub-inhibitory con-
centrations can promote bacterial virulence in vivo remains
unexplored.

There is thus substantial evidence demonstrating that gallium
compounds have a broad spectrum of antibacterial activity, and
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their mechanisms of action are fairly well defined. Clinical trials
to test Ga(NO3)3 in patients with cystic fibrosis are being con-
ducted at the University of Washington; these trials are being
designed to assess the pulmonary safety of the compound and its
efficacy in improving lung function and decreasing P. aeruginosa
counts.

5-Fluorouracil
The uracil analog 5-fluorouracil (5-FU) is an antimetabolite
developed in by Heidelberger et al. (1957). Twenty years later,
clinical trials confirmed that 5-FU was an effective anticancer
drug. To date, 5-FU is widely used in the clinic, being applied sys-
temically to treat gastrointestinal adenocarcinoma and squamous
cell carcinoma, or as adjuvant chemotherapy for breast carcinoma
and others. It is also applied topically to treat actinic keratosis,
superficial basal cell carcinoma, and Bowen’s disease.

5-Fluorouracil as an Antibacterial,
Antibiofilm, and Virulence Inhibitor
In 1985, it was shown that 5-FU had potent antimicrobial effects
against several bacterial pathogens. It was then confirmed that 5-
FU inhibited the growth of S. aureus and S. epidermidis, with an
MIC50 ≤0.8 μg/mL, and that it acts synergistically against Gram
(−) bacteria when combined with beta-lactamics (Gieringer et al.,
1986). Later, it was found that it is synergistic with tobramycin
against S. aureus (Nyhlen et al., 2002) and that it inhibits S.
epidermidis biofilms (Hussain et al., 1992).

Unlike conventional antimicrobials, which act by directly
affecting bacterial growth and survival, anti-virulence therapies
are designed to decrease the potential damage produced by the
pathogens to the host, hence reducing the chances for the devel-
opment of resistance (Rasko and Sperandio, 2010). In this regard,
it was found that because uracil biosynthesis is important for QS,
swarming, biofilm formation, and production of QS-controlled
virulence factors (Ueda et al., 2009), 5-FU is an effective repres-
sor of QS and biofilms without having a severe inhibitory effect
on growth, and was able to protect barley against P. aerug-
inosa infection. The reduction of P. aeruginosa pathogenicity
by 5-FU was also later reported by Imperi et al. (2013a) when
they demonstrated that 5-fluorocytosine, which is converted to
the active compound 5-FU, also reduces pyoverdine, PrpL pro-
tease, and exotoxin A, and suppresses P. aeruginosa pathogenicity
in murine lung infections. 5-FU is also able to inhibit biofilms
and virulence of enterohemorrhagic Escherichia coli (Attila et al.,
2009). Remarkably, in Walz et al. (2010) 5-FU was used in
large-scale human trials as an anti-infective external coating of
central venous catheters, producing better results than the pos-
itive controls chlorhexidine and silver sulfadiazine. It was thus
demonstrated that 5-FU provides a safe and effective coating on
catheters for critically ill patients (Walz et al., 2010).

The effect in 5-FU during bacterial infections in vivo probably
would be dual, targeting both the production of virulence factors
and biofilms as well as bacterial growth. Toxicity to bacteria likely
will depend on the available nutrients, particularly uracil, since
in vitro in rich culture medium (with 0.2 mM of uracil), P. aerug-
inosa can grow well with 25–50 μM of 5-FU (Ueda et al., 2009;
García-Contreras et al., 2013c), while similar concentrations of

5-FU are able to prevent its growth in minimal medium with no
added uracil (West and Chu, 1986).

5-Fluorouracil Action Mechanisms and
Resistance in Bacteria
Although the effects of 5-FU as an anticancer drug are well
known, its effects as an antibacterial have not been extensively
studied. In 1961, one study showed that 5-FU inhibits ribo-
some and protein synthesis in Mg-deprived bacteria. In fungi,
5-FU is transformed to 5-fluorouridine triphosphate (FUTP)
and then incorporated into RNA instead of uridylic acid, alter-
ing the amino-acylation of tRNA, disturbing the amino acid
pool and inhibiting protein synthesis (Waldorf and Polak,
1983; Vermes et al., 2000). In addition, 5-FU is also converted
into 5-fluorodeoxyuridine monophosphate (FdUMP), a potent
inhibitor of thymidylate synthetase, an enzyme essential for the
generation of thymidine, and its inhibition prevents DNA syn-
thesis (Vermes et al., 2000).

Although the mechanisms of action for 5-FU against QS and
biofilms are largely unknown, inhibition of E. coli biofilm forma-
tion by 5-FU requires the presence of AriR (Attila et al., 2009),
which binds DNA and supresses biofilms (Lee et al., 2007). Not
surprisingly, along with the lack of mechanistic studies about 5-
FU’s effects on bacteria, studies of adaptation and resistance to
it are scarce. Recently, however, it was shown that although 5-
FU inhibits the QS-controlled virulence factor production of P.
aeruginosa, some clinical strains are resistant (García-Contreras
et al., 2013c).

Similarly to gallium compounds, 5-FU has broad spectrum
antimicrobial activity and inhibits virulence factor and biofilm
production. Since it had been shown effective at preventing
microbial colonization of catheters in human trials, we expect
that it could be eventually implemented for this purpose, and that
other possible uses, such as a topical or systemic antibiotic, could
be tested in animal models soon.

Repurposing Antibiotics as Virulence
Inhibitors
Interestingly, several different antibiotics, particularly macrolides
such as azithromycin but also ceftazidime (CFT) and
ciprofloxacin, are able to decrease the expression of QS
controlled virulence factors of P. aeruginosa, and azithromycin
has improved the clinical outcome of chronically infected cystic
fibrosis patients (Skindersoe et al., 2008). In addition, this
antibiotic has anti-inflammatory properties and is considered
an ideal candidate for repurposing as an anti-virulence agent.
For a detailed description of azithromycin as an anti-virulence
drug, see (Imperi et al., 2014). It is also noted that ciprofloxacin,
metronidazole, and tinidazole may interfere with QS in vivo
when used to treat Crohn’s disease (Struss et al., 2012).

Antifungals and Other Types of Drugs
Some antifungal drugs also have potent antibacterial activity.
Deng and collaborators identified a compound with broad-
spectrum antibacterial activity, which later led to the identifi-
cation of ciclopirox as an antibacterial, by a structural based
search (Carlson-Banning et al., 2013). Ciclopirox is an off-patent,

Frontiers in Microbiology | www.frontiersin.org 5 April 2015 | Volume 6 | Article 282

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rangel-Vega et al. Drug repurposing for bacterial infections

topical antifungal developed 40 years ago. It is notable for its
excellent safety profile; also, unlike many antifungals, no fun-
gal resistance to it has been identified (Subissi et al., 2010),
which is remarkable. The antifungal mechanism of ciclopirox
remains unknown, though it is known to not inhibit ergos-
terol biosynthesis (Niewerth et al., 2003), and likely interferes
with iron metabolism (Sigle et al., 2005). Ciclopirox has potent
bacteriostatic activity against laboratory and clinical isolates
of E. coli, including ciprofloxacin resistant isolates, with an
MIC50 of 5–15 μg/mL; at higher concentrations, it acts as
bactericide. Moreover, it also inhibits growth of A. bauman-
nii, Klebsiella pneumoniae, P. aeruginosa (including MDR iso-
lates), and Proteus mirabilis. The activity of ciclopirox against
E. coli involves interference with galactose metabolism and
disruption of LPS biosynthesis. For P. aeruginosa, ciclopirox
inhibits pyocyanin and may increase pyoverdine production
(Carlson-Banning et al., 2013).

The anthelmintic drug niclosamide inhibits P. aeruginosa’s
production of acyl-homoserine lactone, QS signaling molecules,
and QS-regulated virulence factors. Niclosamide reduced biofilm
formation and motility, preventing P. aeruginosa pathogenicity
in insects (Imperi et al., 2013b). Similarly, the non-steroidal anti-
inflammatory drug diflunisal is a potent virulence inhibitor for
the USA300 strain of methicillin-resistant S. aureus. It inhibits the
production of alpha-hemolysin andmodulin αwithout inhibiting
growth (Khodaverdian et al., 2013). In addition, statins, which
lower plasma cholesterol levels, also reduce virulence factors of
P. aeruginosa when used at 10–100 μM (Hennessy et al., 2012),
in vivo attachment of S. pneumoniae to lung and vascular tissue at
1 μM (Rosch et al., 2010) and have broad spectrum antibacterial
effects at relatively high concentrations 15–600 μM (Hennessy
et al., 2012), making them additional candidates for repurposing
as antibacterial agents. Nevertheless, the antibacterial properties
of these drugs have still not been demonstrated in mice or other
mammals, and no clinical trials have been conducted.

Other interesting compounds with potential to be repurposed
as anti-virulence drugs are: (1) pentetic acid, a chelating agent
used in the preparation of radiopharmaceuticals and to treat iron-
storage disease and poisoning from heavy metals, which is able
to decrease elastase activity, PQS production, and biofilm for-
mation of P. aeruginosa (Gi et al., 2014); (2) the antihistamine
terfenadine, which inhibits bacterial type II topoisomerases and
thus has potent antimicrobial activity against S. aureus,M. tuber-
culosis and other bacterial pathogens (Perlmutter et al., 2014);
and (3) zafirlukast, a leukotriene receptor antagonist used in the

prophylactic treatment of asthma, which inhibits growth of M.
tuberculosis by blocking complex formation between the pro-
tein Lsr2 and DNA, hence interfering with the condensation and
structural organization of the bacterial genome; interestingly, this
drug target is novel since no current anti-mycobacterial agent is
directed against it (Pinault et al., 2013).

Concluding Remarks

Based on the evidence discussed (summarized in Table 2), there
are currently several drugs in clinical use for other indications
that have demonstrated in vitro efficacy at inhibiting the growth
and/or virulence of bacterial pathogens. These drugs are struc-
turally very diverse and have a very broad spectrum of clinical
uses. Most of these drugs show activity against clinical isolates,
including those that are multidrug resistant and already practi-
cally untreatable, such as MDR isolates of P. aeruginosa (Poole,
2011), A. baumannii, and other recalcitrant bacterial pathogens
(Livermore, 2009); moreover, some of them have alleviated infec-
tions in animal models and the possible ways bacteria may adapt
and develop resistance against some of the most promising drug
candidates is at least partially known. 5-fluorouracil has shown
remarkable antibacterial efficacy in clinical trials, while the other
very promising drug candidates, including gallium compounds,
are either still awaiting or are just beginning human clinical
antibacterial testing.We propose that these compounds represent
new opportunities in the battle against increasingly antibiotic-
resistant bacteria, and we encourage the research and medical
communities to further advance their implementation as antibac-
terial drugs in the clinic. We also encourage the evaluation of
as-yet untested drugs as potential antimicrobial and antivirulence
compounds: we feel this is a fertile field to find new antimicrobials
that could be brought quickly into clinical use. Although some
potential difficulties and disadvantages of repurposing drugs exist
(see Table 1), drug repurposing may be the only feasible alter-
native to effectively treat bacterial infections in a relatively short
period of time, before we have to return to a pre-antibiotic era.

Acknowledgments

RG-C’s research is funded by SEP/CONACyT-México grant
No152794; EAMTwas supported by a CONACyT-México fellow-
ship (No. 269132).

References

Abedon, S. T., Kuhl, S. J., Blasdel, B. G., and Kutter, E. M. (2011). Phage treatment
of human infections. Bacteriophage 1, 66–85. doi: 10.4161/bact.1.2.15845

Al-Aoukaty, A., Appanna, V. D., and Falter, H. (1992). Gallium toxicity and adap-
tation in Pseudomonas fluorescens. FEMS Microbiol. Lett. 71, 265–272. doi:
10.1111/j.1574-6968.1992.tb05272.x

Antunes, L. C., Ferreira, R. B., Buckner, M. M., and Finlay, B. B. (2010).
Quorum sensing in bacterial virulence. Microbiology 156, 2271–2282. doi:
10.1099/mic.0.038794-0

Antunes, L. C., Imperi, F., Minandri, F., and Visca, P. (2012). In vitro and
in vivo antimicrobial activities of gallium nitrate against multidrug-resistant

Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 5961–5970. doi:
10.1128/AAC.01519-12

Aryee, A., and Price, N. (2014). Antimicrobial stewardship – can we afford to do
without it? Br. J. Clin. Pharmacol. 79, 173–178. doi: 10.1111/bcp.12417

Attila, C., Ueda, A., andWood, T. K. (2009). 5-Fluorouracil reduces biofilm forma-
tion in Escherichia coli K-12 through global regulator AriR as an antivirulence
compound. Appl. Microbiol. Biotechnol. 82, 525–533. doi: 10.1007/s00253-009-
1860-8

Beriault, R., Hamel, R., Chenier, D., Mailloux, R. J., Joly, H., and Appanna, V. D.
(2007). The overexpression of NADPH-producing enzymes counters the oxida-
tive stress evoked by gallium, an iron mimetic. Biometals 20, 165–176. doi:
10.1007/s10534-006-9024-0

Frontiers in Microbiology | www.frontiersin.org 6 April 2015 | Volume 6 | Article 282

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rangel-Vega et al. Drug repurposing for bacterial infections

Bernstein, L. R. (1998). Mechanisms of therapeutic activity for gallium. Pharmacol.
Rev. 50, 665–682.

Bernstein, L. R., van der Hoeven, J. J., and Boer, R. O. (2011). Hepatocellular
carcinoma detection by gallium scan and subsequent treatment by galliummal-
tolate: rationale and case study.Anticancer Agents Med. Chem. 11, 585–590. doi:
10.2174/187152011796011046

Bernstein, R. L. (2013). “Gallium, therapeutic effects,” in Encyclopedia of
Metalloproteins, eds R. H. Kretsinger, V. N. Uversky, and E. A. Permyakov
(New York, NY: Springer), 823–835. doi: 10.1007/978-1-4614-1533-6_113

Bonchi, C., Imperi, F., Minandri, F., Visca, P., and Frangipani, E. (2014).
Repurposing of gallium-based drugs for antibacterial therapy. Biofactors 40,
303–312. doi: 10.1002/biof.1159

Brussow, H. (2012). What is needed for phage therapy to become a reality in
Western medicine? Virology 434, 138–142. doi: 10.1016/j.virol.2012.09.015

Carlson-Banning, K. M., Chou, A., Liu, Z., Hamill, R. J., Song, Y., and Zechiedrich,
L. (2013). Toward repurposing ciclopirox as an antibiotic against drug-resistant
Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae. PLoS
ONE 8:e69646. doi: 10.1371/journal.pone.0069646

Chan, B. K., Abedon, S. T., and Loc-Carrillo, C. (2013). Phage cocktails and the
future of phage therapy. Future Microbiol. 8, 769–783. doi: 10.2217/fmb.13.47

Chenier, D., Beriault, R., Mailloux, R., Baquie, M., Abramia, G., Lemire, J., et al.
(2008). Involvement of fumarase C and NADH oxidase in metabolic adapta-
tion of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity.
Appl. Environ. Microbiol. 74, 3977–3984. doi: 10.1128/AEM.02702-07

Chitambar, C. R. (2010).Medical applications and toxicities of gallium compounds.
Int. J. Environ. Res. Public Health 7, 2337–2361. doi: 10.3390/ijerph7052337

Cochis, A., Azzimonti, B., Della Valle, C., Chiesa, R., Arciola, C. R., and Rimondini,
L. (2015). Biofilm formation on titanium implants counteracted by graft-
ing gallium and silver ions. J. Biomed. Mater. Res. A 103, 1176–1187. doi:
10.1002/jbm.a.35270

de Leseleuc, L., Harris, G., Kuolee, R., and Chen, W. (2012). In vitro and
in vivo biological activities of iron chelators and gallium nitrate against
Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 5397–5400. doi:
10.1128/AAC.00778-12

DeLeon, K., Balldin, F., Watters, C., Hamood, A., Griswold, J., Sreedharan, S., et al.
(2009). Gallium maltolate treatment eradicates Pseudomonas aeruginosa infec-
tion in thermally injured mice. Antimicrob. Agents Chemother. 53, 1331–1337.
doi: 10.1128/AAC.01330-08

Franchini, M., Lusvardi, G., Malavasi, G., and Menabue, L. (2012). Gallium-
containing phospho-silicate glasses: synthesis and in vitro bioactivity. Mater.
Sci. Eng. C Mater. Biol. Appl. 32, 1401–1406. doi: 10.1016/j.msec.2012.04.016

Frangipani, E., Bonchi, C., Minandri, F., Imperi, F., and Visca, P. (2014). Pyochelin
potentiates the inhibitory activity of gallium on Pseudomonas aeruginosa.
Antimicrob. Agents Chemother. 58, 5572–5575. doi: 10.1128/AAC.03154-14

García-Contreras, R., Lira-Silva, E., Jasso-Chávez, R., Hernández-González, I.,
Maeda, T., Hashimoto, T., et al. (2013a). Isolation and characterization of gal-
lium resistant Pseudomonas aeruginosa mutants. Int. J. Med. Microbiol. 303,
574–582. doi: 10.1016/j.ijmm.2013.07.009

García-Contreras, R., Maeda, T., and Wood, T. K. (2013b). Resistance to quo-
rum quenching compounds. Appl. Environ. Microbiol. 79, 6840–6846. doi:
10.1128/AEM.02378-13

García-Contreras, R., Martinez-Vazquez, M., Velazquez Guadarrama, N., Villegas
Paneda, A. G., Hashimoto, T., Maeda, T., et al. (2013c). Resistance to the
quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil
in Pseudomonas aeruginosa clinical isolates. Pathog. Dis. 68, 8–11. doi:
10.1111/2049-632X.12039

García-Contreras, R., Perez-Eretza, B., Lira-Silva, E., Jasso-Chavez, R., Coria-
Jimenez, R., Rangel-Vega, A., et al. (2013d). Gallium Induces the production
of virulence factors in Pseudomonas aeruginosa. Pathog. Dis. 70, 95–98. doi:
10.1111/2049-632X.12105

Gi,M., Jeong, J., Lee, K., Lee, K.M., Toyofuku,M., Yong, D. E., et al. (2014). A drug-
repositioning screening identifies pentetic acid as a potential therapeutic agent
for suppressing the elastase-mediated virulence of Pseudomonas aeruginosa.
Antimicrob. Agents Chemother. 58, 7205–7214. doi: 10.1128/AAC.03063-14

Gieringer, J. H., Wenz, A. F., Just, H. M., and Daschner, F. D. (1986). Effect of
5-fluorouracil, mitoxantrone, methotrexate, and vincristine on the antibacte-
rial activity of ceftriaxone, ceftazidime, cefotiam, piperacillin, and netilmicin.
Chemotherapy 32, 418–424. doi: 10.1159/000238445

Hedley,D.W., Tripp, E. H., Slowiaczek, P., andMann, G. J. (1988). Effect of gallium
on DNA synthesis by human T-cell lymphoblasts. Cancer Res. 48, 3014–3018.

Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L.,
Duschinsky, R., et al. (1957). Fluorinated pyrimidines, a new class of tumour-
inhibitory compounds. Nature 179, 663–666. doi: 10.1038/179663a0

Hennessy, E., Mooij, M. J., Legendre, C., Reen, F. J., O’callaghan, J.,
Adams, C., et al. (2012). Statins inhibit in vitro virulence phenotypes of
Pseudomonas aeruginosa. J. Antibiot. (Tokyo) 66, 99–101. doi: 10.1038/ja.
2012.95

Hunter, R. C., Asfour, F., Dingemans, J., Osuna, B. L., Samad, T., Malfroot, A., et al.
(2013). Ferrous iron is a significant component of bioavailable iron in cystic
fibrosis airways.MBio 4, e00557-13. doi: 10.1128/mBio.00557-13

Hussain, M., Collins, C., Hastings, J. G., and White, P. J. (1992). Radiochemical
assay to measure the biofilm produced by coagulase-negative staphylococci on
solid surfaces and its use to quantitate the effects of various antibacterial com-
pounds on the formation of the biofilm. J. Med. Microbiol. 37, 62–69. doi:
10.1099/00222615-37-1-62

Imperi, F., Leoni, L., and Visca, P. (2014). Antivirulence activity of
azithromycin in Pseudomonas aeruginosa. Front. Microbiol. 5:178. doi:
10.3389/fmicb.2014.00178

Imperi, F., Massai, F., Facchini, M., Frangipani, E., Visaggio, D., Leoni, L.,
et al. (2013a). Repurposing the antimycotic drug flucytosine for suppression
of Pseudomonas aeruginosa pathogenicity. Proc. Natl. Acad. Sci. U.S.A. 110,
7458–7463. doi: 10.1073/pnas.1222706110

Imperi, F., Massai, F., Ramachandran Pillai, C., Longo, F., Zennaro, E.,
Rampioni, G., et al. (2013b). New life for an old drug: the anthelmintic drug
niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob.
Agents Chemother. 57, 996–1005. doi: 10.1128/AAC.01952-12

Kaatz, G. W. (2002). Inhibition of bacterial efflux pumps: a new strategy to com-
bat increasing antimicrobial agent resistance. Expert Opin. Emerg. Drugs 7,
223–233. doi: 10.1517/14728214.7.2.223

Kalia, V. C.,Wood, T. K., and Kumar, P. (2014). Evolution of resistance to quorum-
sensing inhibitors.Microb. Ecol. 68, 13–23. doi: 10.1007/s00248-013-0316-y

Kaneko, Y., Thoendel, M., Olakanmi, O., Britigan, B. E., and Singh, P. K. (2007).
The transitionmetal gallium disrupts Pseudomonas aeruginosa ironmetabolism
and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117, 877–888. doi:
10.1172/JCI30783

Kaufmann, G. F., Park, J., and Janda, K. D. (2008). Bacterial quorum sensing: a new
target for anti-infective immunotherapy. Expert Opin. Biol. Ther. 8, 719–724.
doi: 10.1517/14712598.8.6.719

Khodaverdian, V., Pesho, M., Truitt, B., Bollinger, L., Patel, P., Nithianantham,
S., et al. (2013). Discovery of antivirulence agents against methicillin-resistant
Staphylococcus aureus. Antimicrob. Agents Chemother. 57, 3645–3652. doi:
10.1128/AAC.00269-13

Kirkman, H. N., Rolfo, M., Ferraris, A. M., and Gaetani, G. F. (1999). Mechanisms
of protection of catalase by NADPH. Kinetics and stoichiometry. J. Biol. Chem.
274, 13908–13914. doi: 10.1074/jbc.274.20.13908

Lee, J., Page, R., Garcia-Contreras, R., Palermino, J. M., Zhang, X. S., Doshi, O.,
et al. (2007). Structure and function of the Escherichia coli protein YmgB: a pro-
tein critical for biofilm formation and acid-resistance. J. Mol. Biol. 373, 11–26.
doi: 10.1016/j.jmb.2007.07.037

Levaditi, C., Bardet, J., Tchakirian, A., and Vaisman, A. (1931). Thérapeutique:
le gallium, propriétés thérapeutiques dans la syphilis et le trypanosomiases
expérimentales. C R Hebd Seances Acad Sci. Ser. D Sci. Nat. 192, 1142–1143.

Livermore, D. M. (2009). Has the era of untreatable infections arrived?
J. Antimicrob. Chemother. 64(Suppl. 1), i29–i36. doi: 10.1093/jac/dkp255

Lomovskaya, O., and Watkins, W. (2001). Inhibition of efflux pumps as a novel
approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotechnol. 3,
225–236.

Lusvardi, G., Malavasi, G., Menabue, L., and Shruti, S. (2013). Gallium-containing
phosphosilicate glasses: functionalization and in-vitro bioactivity. Mater. Sci.
Eng. C Mater. Biol. Appl. 33, 3190–3196. doi: 10.1016/j.msec.2013.03.046

Maeda, T., García-Contreras, R., Pu, M., Sheng, L., Garcia, L. R., Tomas, M., et al.
(2012). Quorum quenching quandary: resistance to antivirulence compounds.
ISME J. 6, 493–501. doi: 10.1038/ismej.2011.122

Menon, S., Wagner, H. N. Jr., and Tsan, M. F. (1978). Studies on gallium accu-
mulation in inflammatory lesions: II. Uptake by Staphylococcus aureus: concise
communication. J. Nucl. Med. 19, 44–47.

Frontiers in Microbiology | www.frontiersin.org 7 April 2015 | Volume 6 | Article 282

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Rangel-Vega et al. Drug repurposing for bacterial infections

Minandri, F., Bonchi, C., Frangipani, E., Imperi, F., and Visca, P. (2014). Promises
and failures of gallium as an antibacterial agent. Future Microbiol. 9, 379–397.
doi: 10.2217/fmb.14.3

Mullard, A. (2012). Drug repurposing programmes get lift off. Nat. Rev. Drug
Discov. 11, 505–506. doi: 10.1038/nrd3776

Niewerth, M., Kunze, D., Seibold, M., Schaller, M., Korting, H. C., and Hube,
B. (2003). Ciclopirox olamine treatment affects the expression pattern of
Candida albicans genes encoding virulence factors, iron metabolism proteins,
and drug resistance factors. Antimicrob. Agents Chemother. 47, 1805–1817. doi:
10.1128/AAC.47.6.1805-1817.2003

Nyhlen, A., Ljungberg, B., Nilsson-Ehle, I., and Odenholt, I. (2002). Bactericidal
effect of combinations of antibiotic and antineoplastic agents against
Staphylococcus aureus and Escherichia coli. Chemotherapy 48, 71–77. doi:
10.1159/000057665

Olakanmi, O., Britigan, B. E., and Schlesinger, L. S. (2000). Gallium disrupts
iron metabolism of mycobacteria residing within human macrophages. Infect.
Immun. 68, 5619–5627. doi: 10.1128/IAI.68.10.5619-5627.2000

Olakanmi, O., Gunn, J. S., Su, S., Soni, S., Hassett, D. J., and Britigan, B. E. (2010).
Gallium disrupts iron uptake by intracellular and extracellular Francisella
strains and exhibits therapeutic efficacy in amurine pulmonary infectionmodel.
Antimicrob. Agents Chemother. 54, 244–253. doi: 10.1128/AAC.00655-09

Perlmutter, J. I., Forbes, L. T., Krysan, D. J., Ebsworth-Mojica, K., Colquhoun, J.M.,
Wang, J. L., et al. (2014). Repurposing the antihistamine terfenadine for antimi-
crobial activity against Staphylococcus aureus. J. Med. Chem. 57, 8540–8562. doi:
10.1021/jm5010682

Perry, A. C., Ni Bhriain, N., Brown, N. L., and Rouch, D. A. (1991). Molecular char-
acterization of the gor gene encoding glutathione reductase from Pseudomonas
aeruginosa: determinants of substrate specificity among pyridine nucleotide-
disulphide oxidoreductases. Mol. Microbiol. 5, 163–171. doi: 10.1111/j.1365-
2958.1991.tb01837.x

Pinault, L., Han, J. S., Kang, C.M., Franco, J., and Ronning, D. R. (2013). Zafirlukast
inhibits complexation of Lsr2 with DNA and growth of Mycobacterium tuber-
culosis. Antimicrob. Agents Chemother. 57, 2134–2140. doi: 10.1128/AAC.
02407-12

Poole, K. (2011). Pseudomonas aeruginosa: resistance to the max. Front. Microbiol.
2:65. doi: 10.3389/fmicb.2011.00065

Rasko, D. A., and Sperandio, V. (2010). Anti-virulence strategies to com-
bat bacteria-mediated disease. Nat. Rev. Drug Discov. 9, 117–128. doi:
10.1038/nrd3013

Rosch, J. W., Boyd, A. R., Hinojosa, E., Pestina, T., Hu, Y., Persons, D. A., et al.
(2010). Statins protect against fulminant pneumococcal infection and cytolysin
toxicity in a mouse model of sickle cell disease. J. Clin. Invest. 120, 627–635. doi:
10.1172/JCI39843

Ross-Gillespie, A., Weigert, M., Brown, S. P., and Kummerli, R. (2014).
Gallium-mediated siderophore quenching as an evolutionarily robust antibac-
terial treatment. Evol. Med. Public Health 2014, 18–29. doi: 10.1093/emph/
eou003

Rzhepishevska, O., Ekstrand-Hammarstrom, B., Popp, M., Bjorn, E., Bucht, A.,
Sjostedt, A., et al. (2011). The antibacterial activity of Ga3+ is influenced by
ligand complexation as well as the bacterial carbon source. Antimicrob. Agents
Chemother. 55, 5568–5580. doi: 10.1128/AAC.00386-11

Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., and Lee, B. J. (2012).
Antimicrobial peptides for therapeutic applications: a review. Molecules 17,
12276–12286. doi: 10.3390/molecules171012276

Shruti, S., Salinas, A. J., Lusvardi, G., Malavasi, G., Menabue, L., and Vallet-
Regi, M. (2013). Mesoporous bioactive scaffolds prepared with cerium-,
gallium- and zinc-containing glasses. Acta Biomater 9, 4836–4844. doi:
10.1016/j.actbio.2012.09.024

Sigle, H. C., Thewes, S., Niewerth, M., Korting, H. C., Schafer-Korting, M., and
Hube, B. (2005). Oxygen accessibility and iron levels are critical factors for
the antifungal action of ciclopirox against Candida albicans. J. Antimicrob.
Chemother. 55, 663–673. doi: 10.1093/jac/dki089

Skindersoe, M. E., Alhede, M., Phipps, R., Yang, L., Jensen, P. O., Rasmussen,
T. B., et al. (2008). Effects of antibiotics on quorum sensing in Pseudomonas
aeruginosa. Antimicrob. Agents Chemother. 52, 3648–3663. doi: 10.1128/AAC.
01230-07

Srivastava, T. N., Bajpai, K. K., and Singh, K. (1973). Anti-microbial activities of
diaryl gallium, indium and thallium compounds. Indian J. Agric. Sci. 43, 89–93.

Struss, A. K., Pasini, P., Flomenhoft, D., Shashidhar, H., and Daunert, S. (2012).
Investigating the effect of antibiotics on quorum sensing with whole-cell
biosensing systems.Anal. Bioanal. Chem. 402, 3227–3236. doi: 10.1007/s00216-
012-5710-7

Subissi, A., Monti, D., Togni, G., and Mailland, F. (2010). Ciclopirox: recent non-
clinical and clinical data relevant to its use as a topical antimycotic agent. Drugs
70, 2133–2152. doi: 10.2165/11538110-000000000-00000

Ueda, A., Attila, C., Whiteley, M., and Wood, T. K. (2009). Uracil influences
quorum sensing and biofilm formation in Pseudomonas aeruginosa and flu-
orouracil is an antagonist. Microb. Biotechnol. 2, 62–74. doi: 10.1111/j.1751-
7915.2008.00060.x

Valappil, S. P., Ready, D., Abou Neel, E. A., Pickup, D. M., O’dell, L. A.,
Chrzanowski, W., et al. (2009). Controlled delivery of antimicrobial gal-
lium ions from phosphate-based glasses. Acta Biomater 5, 1198–1210. doi:
10.1016/j.actbio.2008.09.019

Valappil, S. P., Yiu, H. H., Bouffier, L., Hope, C. K., Evans, G., Claridge,
J. B., et al. (2013). Effect of novel antibacterial gallium-carboxymethyl
cellulose on Pseudomonas aeruginosa. Dalton Trans. 42, 1778–1786. doi:
10.1039/C2DT32235H

Vermes, A., Guchelaar, H. J., and Dankert, J. (2000). Flucytosine: a review of
its pharmacology, clinical indications, pharmacokinetics, toxicity and drug
interactions. J. Antimicrob. Chemother. 46, 171–179. doi: 10.1093/jac/46.2.171

Waldorf, A. R., and Polak, A. (1983). Mechanisms of action of 5-fluorocytosine.
Antimicrob. Agents Chemother. 23, 79–85. doi: 10.1128/AAC.23.1.79

Walsh, C. T., and Wencewicz, T. A. (2014). Prospects for new antibi-
otics: a molecule-centered perspective. J. Antibiot. (Tokyo) 67, 7–22. doi:
10.1038/ja.2013.49

Walz, J. M., Avelar, R. L., Longtine, K. J., Carter, K. L., Mermel, L. A., and
Heard, S. O. (2010). Anti-infective external coating of central venous catheters:
a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexi-
dine/silver sulfadiazine in preventing catheter colonization. Crit. Care Med. 38,
2095–2102. doi: 10.1097/CCM.0b013e3181f265ba

Weiss, R. B. (1992). The anthracyclines: will we ever find a better doxorubicin?
Semin. Oncol. 19, 670–686.

West, T. P., and Chu, C. P. (1986). Utilization of pyrimidines and pyrimidine
analogues by fluorescent pseudomonads.Microbios 47, 149–157.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Rangel-Vega, Bernstein, Mandujano-Tinoco, García-Contreras
and García-Contreras. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 April 2015 | Volume 6 | Article 282

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections
	Introduction
	New Approaches to Combat Bacterial Infections on the Verge of the Post-Antibiotic Era
	Anticancer Drugs as Antimicrobials
	Gallium
	Gallium in the Treatment of Cancer
	Gallium Compounds have Potent Antimicrobial Effects
	Mechanisms of Antimicrobial Activity for Gallium
	Bacterial Adaptation and Resistance to Gallium
	5-Fluorouracil
	5-Fluorouracil as an Antibacterial, Antibiofilm, and Virulence Inhibitor
	5-Fluorouracil Action Mechanisms and Resistance in Bacteria
	Repurposing Antibiotics as Virulence Inhibitors
	Antifungals and Other Types of Drugs

	Concluding Remarks
	Acknowledgments
	References


